<h3>Given</h3>
tan(x)²·sin(x) = tan(x)²
<h3>Find</h3>
x on the interval [0, 2π)
<h3>Solution</h3>
Subtract the right side and factor. Then make use of the zero-product rule.
... tan(x)²·sin(x) -tan(x)² = 0
... tan(x)²·(sin(x) -1) = 0
This is an indeterminate form at x = π/2 and undefined at x = 3π/2. We can resolve the indeterminate form by using an identity for tan(x)²:
... tan(x)² = sin(x)²/cos(x)² = sin(x)²/(1 -sin(x)²)
Then our equation becomes
... sin(x)²·(sin(x) -1)/((1 -sin(x))(1 +sin(x))) = 0
... -sin(x)²/(1 +sin(x)) = 0
Now, we know the only solutions are found where sin(x) = 0, at ...
... x ∈ {0, π}
Speed = distance / time
given:
distance = 225 km and time = 2.5 hours
so
speed = 225 / 2.5 = 90 km per hour
Answer:
Speed = 90 km per hour
How to find the area of a parallelogram is length times height. 12 times what gets you to 60? 5 does. 12 times 5 is 60.
HEIGHT: 5
Answer:
2
Step-by-step explanation:
Divide 3.4 by 1.7 and you get 2
8x²+3y²=24
8x²+3y²-24=0
Let x be 1 ,
Therefore
8+3y²-24=0
3y²-16=0
3y²=16
y²=16/3
y=4/1.7
y=40/17
<em><u>Take</u></em><em><u> </u></em><em><u>different</u></em><em><u> </u></em><em><u>values</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>&</u></em><em><u>y</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>plot</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>graph</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em>