Answer:
75%
Step-by-step explanation:
Answer:
The answer is 672.
Step-by-step explanation:
To solve this problem, first let's find the surface area of the rectangular prism. To do that, multiply each dimension with each (times 2 | just in case you don't understand [what I'm talking about is down below]).
8 x 8 x 2 = 128
8 x 11 x 2 = 176
8 x 11 x 2 = 176
Then, add of the products together to find the surface area of the rectangular prism.
176 + 176 + 128 = 480
Now, let's find the surface area of the square pyramid. Now, for this particular pyramid, let's deal with the triangles first, then the square. Like we did with the rectangular prism above, multiply each dimension with each other (but dividing the product by 2 | in case you don't understand [what i'm talking about is down below]).
8 x 8 = 64.
64 ÷ 2 = 32.
SInce there are 4 triangles, multiply the quotient by 4 to find the surface area of the total number of triangles (what i'm talking about is down below).
32 x 4 = 128.
Now, let's tackle the square. All you have to do is find the area of the square.
8 x 8 = 64.
To find the surface area of the total square pyramid, add both surface areas.
128 + 64 = 192.
Finally, add both surface areas of the two 3-D shapes to find the surface area of the composite figure.
192 + 480 = 672.
Therefore, 672 is the answer.
Answer:
Function:
c = f(w) = 0.49, 0 < w ≤ 1
= 0.70, 1 < w ≤ 2
= 0.91, 2 < w ≤ 3
Step-by-step explanation:
Yes, the relation described can be interpreted as a function.
Here, c is the cost of a mail letter. c depends upon w, which is the weights of the mail letter.
As described in the question, the relation can be expressed as a function.
c can be expressed as a function of w in the following manner:
c(cost of mail) = f(w), where w is the independent variable and c is the dependent variable
c = f(w) = 0.49, 0 < w ≤ 1
= 0.70, 1 < w ≤ 2
= 0.91, 2 < w ≤ 3
where, c is in dollars and w is in ounces.
Answer:
angles F and G are supplementary
Step-by-step explanation:
The angles add up to 180
Answer:B
Step-by-step explanation: