![\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ \rule{31em}{0.25pt}\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bratio%20relations%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bccccllll%7D%20%26%5Cstackrel%7Bratio~of~the%7D%7BSides%7D%26%5Cstackrel%7Bratio~of~the%7D%7BAreas%7D%26%5Cstackrel%7Bratio~of~the%7D%7BVolumes%7D%5C%5C%20%26-----%26-----%26-----%5C%5C%20%5Ccfrac%7B%5Ctextit%7Bsimilar%20shape%7D%7D%7B%5Ctextit%7Bsimilar%20shape%7D%7D%26%5Ccfrac%7Bs%7D%7Bs%7D%26%5Ccfrac%7Bs%5E2%7D%7Bs%5E2%7D%26%5Ccfrac%7Bs%5E3%7D%7Bs%5E3%7D%20%5Cend%7Barray%7D%5C%5C%5C%5C%20%5Crule%7B31em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7B%5Ctextit%7Bsimilar%20shape%7D%7D%7B%5Ctextit%7Bsimilar%20shape%7D%7D%5Cqquad%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7Bs%5E2%7D%7D%7B%5Csqrt%7Bs%5E2%7D%7D%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bs%5E3%7D%7D%7B%5Csqrt%5B3%5D%7Bs%5E3%7D%7D%20)
![\bf \rule{31em}{0.25pt}\\\\ \cfrac{smaller}{larger}\qquad \cfrac{s}{s}=\cfrac{\sqrt{98}}{\sqrt{162}}~~ \begin{cases} 98=2\cdot 7\cdot 7\\ \qquad 2\cdot 7^2\\ 162=2\cdot 9\cdot 9\\ \qquad 2\cdot 9^2 \end{cases}\implies \cfrac{s}{s}=\cfrac{\sqrt{2\cdot 7^2}}{\sqrt{2\cdot 9^2}} \\[2em] \cfrac{s}{s}=\cfrac{7\sqrt{2}}{9\sqrt{2}}\implies \cfrac{s}{s}=\cfrac{7}{9}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Crule%7B31em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Ccfrac%7Bsmaller%7D%7Blarger%7D%5Cqquad%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7B98%7D%7D%7B%5Csqrt%7B162%7D%7D~~%20%5Cbegin%7Bcases%7D%2098%3D2%5Ccdot%207%5Ccdot%207%5C%5C%20%5Cqquad%202%5Ccdot%207%5E2%5C%5C%20162%3D2%5Ccdot%209%5Ccdot%209%5C%5C%20%5Cqquad%202%5Ccdot%209%5E2%20%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B%5Csqrt%7B2%5Ccdot%207%5E2%7D%7D%7B%5Csqrt%7B2%5Ccdot%209%5E2%7D%7D%20%5C%5C%5B2em%5D%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B7%5Csqrt%7B2%7D%7D%7B9%5Csqrt%7B2%7D%7D%5Cimplies%20%5Ccfrac%7Bs%7D%7Bs%7D%3D%5Ccfrac%7B7%7D%7B9%7D%20)
bearing in mind that the ratio of the sides, is the same as the ratio of the perimeters.
Answer:D.
-4°F
Step-by-step explanation:
3p-4=8
+4 on both sides to get
3p=12
divide each side by 3 to get p=4
2p=4
divide off 2 on both sides to get
p=2
Is 2=4? If it is then it is equivelent, if it isnt then theyre not.
<u>ANSWER: </u>
The values of x and p after solving given equations are 0.445 or
and 260 respectively..
<u>SOLUTION:
</u>
Given, two proportions are
=9 and 
We need to solve the given two proportions.
Let us solve the first proportion,
= 9

On cross-multiplication, we get
4
1 = 9x
4 = 9x
x = 
x = 0.445
Now, let us solve the second proportion 



On cross-multiplication, we get
p = 260
Hence, the values of x and p after solving given equations are 0.445 and 260 respectively.