<h2>
Hello!</h2>
The answers are:
A.
and 
D.
and 
<h2>
Why?</h2>
To find which of the following pairs of numbers contains like fractions, we must remember that like fractions are the fractions that share the same denominator.
We are given two fractions that are like fractions. Those fractions are:
Option A.
and 
We have that:

So, we have that the pairs of numbers
and

Share the same denominator, which is equal to 6, so, the pairs of numbers contains like fractions.
Option D.
and 
We have that:

So, we have that the pair of numbers
and

Share the same denominator, which is equal to 7, so, the pairs of numbers constains like fractions.
Also, we have that the other given options are not like fractions since both pairs of numbers do not share the same denominator.
The other options are:

and

We can see that both pairs of numbers do not share the same denominator so, they do not contain like fractions.
Hence, the answers are:
A.
and 
D.
and 
Have a nice day!
We have that
point C and point D have y = 0-----------> (the bottom of the trapezoid).
point A and point B have y = 4e ---------- > (the top of the trapezoid)
the y component of midpoint would be halfway between these lines
y = (4e+ 0)/2 = 2e.
<span>the x component of the midpoint of the midsegment would be halfway between the midpoint of AB and the midpoint of CD.
x component of midpoint of AB is (4d + 4f)/2.
x component of midpoint of CD is (4g + 0)/2 = 4g/2.
x component of a point between the two we just found is
[(4d + 4f)/2 + 4g/2]/2 = [(4d + 4f + 4g)/2]/2 = (4d + 4f + 4g)/4 = d + f + g.
</span>therefore
the midpoint of the midsegment is (d + f + g, 2e)
A linear equation would be the best fit, but the last point (-1,-7) kinda messes it up. If the -7 would have been a -6 the line y=-2x-8 would fit perfectly.
Hi! actually, the y intercept is 0, 8. hopefully this helps
15/17. The value (ratio) of cos A is 15/17.
The trigonometric ratios of an acute angle are, basically, the sine, the cosine and the tangent. They are defined from an acute angle, α, of a right triangle, whose elements are the hypotenuse, the leg contiguous to the angle, and the leg opposite the angle.
-The sine of the angle is the opposite leg divided by the hypotenuse.
-The cosine of the angle is the adjacent leg divided by the hypotenuse.
-The tangent of the angle is the opposite leg divided by the adjacent leg or, which is the same, the sine of the angle divided by the cosine of the angle.
cos A = adjacent leg/hypothenuse = BC/AC = 15/17