The value of angle x of the given cyclic segment is; 49.5°
<h3>How to find the angle of an arc?</h3>
We are given the measure of the angle of arc QS as (4x – 18)°
Now, to find the measure of arc QS, this angle is to be equal to 180° and as such;
Thus;
(4x – 18)° = 180°
4x - 18 = 180
4x = 180 + 18
4x = 198
x = 198/4
x = 49.5°
The angle subtended by the arc at the center of a circle with center C is the angle of the arc. It is denoted by. m AB, where A and B are the endpoints of the arc. With the help of the arc length formula, we can find the measure of arc angle.
The formula to measure the length of the arc is;
Arc Length Formula (if angle θ is in degrees); s = 2πr (θ/360°)
Arc Length Formula (if θ is in radians) s = ϴ × r.
Thus, the value of x of the given cyclic segment is; 49.5°
Read more about arc angle at; brainly.com/question/2005046
#SPJ1
<span>binomial </span>is an algebraic expression containing 2 terms. For example, (x + y) is a binomial.
We sometimes need to expand binomials as follows:
(a + b)0 = 1
(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2
(a + b)3 = a3 + 3a2b + 3ab2 + b3
<span>(a + b)4</span> <span>= a4 + 4a3b</span><span> + 6a2b2 + 4ab3 + b4</span>
<span>(a + b)5</span> <span>= a5 + 5a4b</span> <span>+ 10a3b2</span><span> + 10a2b3 + 5ab4 + b5</span>
Clearly, doing this by direct multiplication gets quite tedious and can be rather difficult for larger powers or more complicated expressions.
Pascal's Triangle
We note that the coefficients (the numbers in front of each term) follow a pattern. [This was noticed long before Pascal, by the Chinese.]
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
You can use this pattern to form the coefficients, rather than multiply everything out as we did above.
The Binomial Theorem
We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
<span>Properties of the Binomial Expansion <span>(a + b)n</span></span><span><span>There are <span>\displaystyle{n}+{1}<span>n+1</span></span> terms.</span><span>The first term is <span>an</span> and the final term is <span>bn</span>.</span></span><span>Progressing from the first term to the last, the exponent of a decreases by <span>\displaystyle{1}1</span> from term to term while the exponent of b increases by <span>\displaystyle{1}1</span>. In addition, the sum of the exponents of a and b in each term is n.</span><span>If the coefficient of each term is multiplied by the exponent of a in that term, and the product is divided by the number of that term, we obtain the coefficient of the next term.</span>
Sometimes never always always
Answer:
10.375
Step-by-step explanation:
1.) Add up all the amount of pizzas | 12 + 9 + 11 +10+13+8+ 7,+ 13=83
2) Divide the total amount of pizzas by the amount of pizzas/amount of numbers of pizzas. | 83 divided by 8 =
10.375
Answer:
24+48+10+14+4=100
10+4=14
14/100, or 7/50 chance
Step-by-step explanation:
Experimental probability is the result of an individual experiment, not theoretical probability