1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
3 years ago
7

A student evaluated -4 +

Mathematics
1 answer:
Darya [45]3 years ago
7 0

Answer:

-97

You might be interested in
If m A.129 <br> B.43 <br> C.137 <br> D.86
Rudik [331]

Answer:

the answer is B 43 i think im right nut please let me know

Step-by-step explanation:

PLEASE GIVE ME BRAINLYEST

3 0
3 years ago
PLEASE HELP ASAP!!!
Alborosie

Answer:

(2,6)

Step-by-step explanation:

Since its reflecting on the y axis, the rule for that is (-x,y) for x the sign changes, and y stays the same. The coordinates for Q are (-2,6) and when you use the rule itll come out to (2,6)

4 0
3 years ago
Nt Addition and Cogs tru<br> D<br> 13<br> F.
Serga [27]

Answer:

666665555

Step-by-step explanation:

nasnfojn jkfnsdjjdsbfbdsf

7 0
3 years ago
a. If cosθ=−45 where θ is in quadrant 3, find sin2θ. b. If cosθ=2√2 where θ is in quadrant 1, find cos2θ. c. If sinθ=817 where θ
sesenic [268]

Answer:

Part A) sin(2\theta)=\frac{24}{25}

Part B) cos(2\theta)=0

Part C) tan(2\theta)=-\frac{240}{161}

Step-by-step explanation:

Part A) we have cos(\theta)=-\frac{4}{5}

θ is in quadrant 3 ----> the sine is negative

Find sin(2\theta)

we know that

sin(2\theta)=2sin(\theta)cos(\theta)

Remember that

cos^{2} (\theta)+sin^{2} (\theta)=1

substitute

(-\frac{4}{5})^{2}+sin^{2} (\theta)=1

(\frac{16}{25})+sin^{2} (\theta)=1

sin^{2} (\theta)=1-\frac{16}{25}

sin^{2} (\theta)=\frac{9}{25}

sin(\theta)=-\frac{3}{5} ---> remember that the sine is negative (3 quadrant)

Find sin(2\theta)

we have

cos(\theta)=-\frac{4}{5}

sin(\theta)=-\frac{3}{5}

sin(2\theta)=2sin(\theta)cos(\theta)

substitute

sin(2\theta)=2(-\frac{3}{5})(-\frac{4}{5})

sin(2\theta)=\frac{24}{25}

Part B) we have cos(\theta)=\frac{\sqrt{2}}{2}

θ is in quadrant 1

Find cos(2\theta)      

we know that

cos(2\theta)=2cos^{2} (\theta)-1

substitute

cos(2\theta)=2(\frac{\sqrt{2}}{2} )^{2}-1

cos(2\theta)=0

Part C) we have sin(\theta)=\frac{8}{17}

θ is in quadrant 2 ----> the cosine is negative

Find tan(2\theta)  

we know that

tan(2\theta)=\frac{2tan(\theta)}{1-tan^{2} (\theta)}

Remember that

cos^{2} (\theta)+sin^{2} (\theta)=1

substitute

cos^{2} (\theta)+(\frac{8}{17})^{2}=1

cos^{2} (\theta)=1-\frac{64}{289}

cos^{2} (\theta)=\frac{225}{289}

cos(\theta)=-\frac{15}{17}

Find tan(\theta)  

tan(\theta)=\frac{sin(\theta)}{cos(\theta)}

substitute

tan(\theta)=\frac{(8/17)}{(-15/17)}

tan(\theta)=-\frac{8}{15}

Find tan(2\theta)  

tan(2\theta)=\frac{2tan(\theta)}{1-tan^{2} (\theta)}

substitute

tan(2\theta)=\frac{2(-\frac{8}{15})}{1-(-\frac{8}{15})^{2}}

tan(2\theta)=\frac{(-\frac{16}{15})}{1-(\frac{64}{225})}

tan(2\theta)=\frac{(-\frac{16}{15})}{1-\frac{64}{225}}

tan(2\theta)=\frac{(-\frac{16}{15})}{\frac{161}{225}}

tan(2\theta)=-\frac{240}{161}

3 0
3 years ago
Write your answer as a fraction or as a whole
NeTakaya

Answer:

Perimeter=25

Step-by-step explanation:

HOPE THIS HELPS YOU

6 0
2 years ago
Other questions:
  • Please help me with this problem !!!!!!
    10·1 answer
  • Please answer this!!!
    8·1 answer
  • Diction can be subdivided into;
    12·1 answer
  • An experiment consists of drawing 1 card from a standard​ 52-card deck. what is the probability of drawing a queenqueen​
    7·1 answer
  • What's the equation answer to-28= 7(n+3)
    11·2 answers
  • PLEASE HELP I WILL MARK BRAINLIEST
    15·1 answer
  • Ellie's new kitten is 412 inches long. Her rabbit is 325 inches longer than her kitten. Which equation can be used to find the l
    12·2 answers
  • Help Help Help HELPPP MEEE PLEASEE :&lt;
    5·1 answer
  • What is the inverse function of f(x)= x/x-2?
    13·1 answer
  • Please help me answer this question, 20 POINTS!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!