The probability that a randomly selected adult has an IQ less than
135 is 0.97725
Step-by-step explanation:
Assume that adults have IQ scores that are normally distributed with a mean of mu equals μ = 105 and a standard deviation sigma equals σ = 15
We need to find the probability that a randomly selected adult has an IQ less than 135
For the probability that X < b;
- Convert b into a z-score using z = (X - μ)/σ, where μ is the mean and σ is the standard deviation
- Use the normal distribution table of z to find the area to the left of the z-value ⇒ P(X < b)
∵ z = (X - μ)/σ
∵ μ = 105 , σ = 15 and X = 135
∴ 
- Use z-table to find the area corresponding to z-score of 2
∵ The area to the left of z-score of 2 = 0.97725
∴ P(X < 136) = 0.97725
The probability that a randomly selected adult has an IQ less than
135 is 0.97725
Learn more:
You can learn more about probability in brainly.com/question/4625002
#LearnwithBrainly
Answer:
The median is 19.45
Step-by-step explanation:
Organize the numbers from least to greatest
16.3, 17.8, 17.8, 18.0, 18.7, 19.3, 19.6, 20.1, 20.5, 21.9, 25.2, 25.4
Find the middle of the set of numbers
19.3 and 19.6
Add 9.3 and 19.6
19.3 + 19.6=
38.9
Divide by 2
38.9/2
Which is 19.45
Hope this helps
Let
X/Y--------> the ratio
we know that
X/Y units --------> are inches/yards
9 yards*(X/Y ) inches/yards-------> 9*X/Y yards*inches/yards----> 9*X/Y inches
the ratio in this problem is (X/Y inches /yards)-------> 36/1 inches/yards
the unit in the numerator of the ratio is inches
the answer is
inches
Answer:
The rule for a rotation by 270° about the origin is (x,y)→(y,−x) .
Since there is no repetition allowed, there are 10 possibilities for the 1st digit, 9 for the 2nd, 8 for the 3rd, and 7 for the 4th. This gives a total of (10)(9)(8)(7) = 5040 four-digit codes.
For all odd digits to be used, there are 5 possibilities for the 1st digit (1,3,5,7,9), 4 for the 2nd, 3 for the 3rd, 2 for the 4th. This gives a total of (5)(4)(3)(2) = 120 codes that only use odd digits.
Therefore there are 5040 - 120 = 4920 codes that do not consist of all odd digits. The probability is 4920/5040 = 41/42.