Answer:
:5:5&&'4&4&4&:&;4"33*2**223$&4&4&55&
Answer:
y=3/2x-7
Step-by-step explanation:
the equation of the line for slope-intercept form is y=mx+b, where m is the slope and b is the y intercept.
we are given two points: (4,-1) and (8,5)
the equation for slope is (y2-y1)/(x2-x1)
label the points:
x1=4
y1=-1
x2=8
y2=5
now substitute into the equation:
m=(5--1)/(8-4)
m=6/4
m=3/2
the slope of the line is 3/2
here is our equation so far:
y=3/2x+b
we need to find b
since the equation will pass through the points, we can substitute either one into the equation to find b
let's use (4,-1) as an example
substitute into the equation
-1=3/2(4)+b
-1=6+b
-7=b
the y intercept is -7
so the equation is y=3/2x-7
hope this helps!
Answer:
c
Step-by-step explanation:
an exponential function of the form
y = a
to find a and b use ordered pairs from the table
using (0, 0.5 ) , then
0.5 = a
[
= 1 ] , then
a = 0.5
so y = 0.5
using (1, 2 ) , then
2 = 0.5
= 0.5b ( divide both sides by 0.5 )
4 = b
then exponential function represented by the table is
y = 0.5 
5.575 because you would need to add half of 0.05 which is 0.075
I think this right : )
Answer:
a) ![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+264,034,000](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000)
b) f(t=2015) = 264,034,317.7
Step-by-step explanation:
The rate of change in the number of hospital outpatient visits, in millions, is given by:

a) To find the function f(t) you integrate f(t):
![\int \frac{df(t)}{dt}dt=f(t)=\int [0.001155t(t-1980)^{0.5}]dt](https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdf%28t%29%7D%7Bdt%7Ddt%3Df%28t%29%3D%5Cint%20%5B0.001155t%28t-1980%29%5E%7B0.5%7D%5Ddt)
To solve the integral you use:

Next, you replace in the integral:

Then, the function f(t) is:
![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+C'](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2BC%27)
The value of C' is deduced by the information of the exercise. For t=0 there were 264,034,000 outpatient visits.
Hence C' = 264,034,000
The function is:
![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+264,034,000](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000)
b) For t = 2015 you have:
![f(t=2015)=0.001155[\frac{2}{3}(2015)(2015-1980)^{1/2}-\frac{4}{15}(2015-1980)^{5/2}]+264,034,000\\\\f(t=2015)=264,034,317.7](https://tex.z-dn.net/?f=f%28t%3D2015%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7D%282015%29%282015-1980%29%5E%7B1%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%282015-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000%5C%5C%5C%5Cf%28t%3D2015%29%3D264%2C034%2C317.7)