Answer:
Radiolabeled carbon atom in CO2
Explanation:
Photosynthesis is the process by which green plants fix the atmospheric CO2 into glucose. The process includes carbon fixation during which RuBisCo enzyme catalyzes the reaction of CO2 and a five-carbon compound called RuBP to form 3-phosphoglycerate (3-PGA). The 3-PGA enters the reduction phase of the Calvin cycle wherein it is reduced into glyceraldehyde 3-phosphate. Two molecules of glyceraldehyde 3-phosphate make one molecule of glucose.
To test the hypothesis that glyceraldehyde 3-phosphate from photosynthesis is used by plants to synthesize lipids, radiolabeled CO2 must be used. The radiolabeled carbon atom in the CO2 would be fixed in the form of glyceraldehyde 3-phosphate. If the plant uses glyceraldehyde 3-phosphate as a precursor for lipid synthesis, the synthesized lipid molecules would carry the radiolabeled carbon atom.
Answer: b bet
Explanation: ya ina enslaved
In complementary base pairing, the G pairs with C, and A pairs with T. Given that this be the rule, the complementary nucleotides for your sequence would be as follows: CGATTAACGTAGGCA.
With regards to proofreading, mutations in cell division occur once in around every 100,000 base pairs. If this happens, the enzyme that pairs the nucleotides to form DNA, called DNA polymerase, detects the error and moves back along the strand, it then cuts the incorrect nucleotide and replaces it with the correct one, fixing the error and continuing with the DNA synthesis.
This process corrects the majority of errors in DNA synthesis, but some errors can still be missed by the DNA polymerase, this is then rectified by a protein complex which binds to the incorrect pairing until anther complex, comes along and cuts that particular section of DNA out, which is then replaced by a new section of correct nucleotides synthesized by the polymerase enzyme, the two sections at either end that were cut is then sealed by ligase, an enzyme which essentially "glues" the DNA stands back together.
My apologies for the long answer, I hope I answered your question and that you understand it well enough.
Answer:
Due to less steps and requires less energy.
Explanation:
The bacterial cell is able to use glucose first as an energy source then switch to lactose because glucose requires less steps and less amount of energy for the break down as compared to lactose. If lactose is the only sugar available to the bacterial cells, then bacterial cells will use it as energy source for the production of energy. In order to use lactose, the bacteria must express the lac operon genes, which encode the main enzymes for lactose uptake and metabolism.