Answer:
16
Step-by-step explanation:
Subtract DE from CE and you will get the value of CD
27 - 11 = 16
Complete question is;
Many states run lotteries to raise money. A website advertises that it knows "how to increase YOUR chances of Winning the Lottery." They offer several systems and criticize others as foolish. One system is called Lucky Numbers. People who play the Lucky Numbers system just pick a "lucky" number to play, but maybe some numbers are luckier than others. Let's use a simulation to see how well this system works. To make the situation manageable, simulate a simple lottery in which a single digit from 0 to 9 is selected as the winning number. Any value can be picked, but for this exercise, pick 1 as the lucky number. What proportion of the time do you win?
Answer:
10%
Step-by-step explanation:
We are told that To make the situation manageable, simulate a simple lottery in which a single digit from 0 to 9 is selected as the winning number.
This means the total number of single digits that could possibly be a winning one is 10.
Since we are told that only 1 can be picked, thus;
Probability of winning is; 1/10 = 0.1 or 10%
A. The cost of buying x number of concert tickets for $76 each.
The period of the function is 2pi
Answer: B. The coordinates of the center are (-3,4), and the length of the radius is 10 units.
Step-by-step explanation:
The equation of a circle in the center-radius form is:
(1)
Where
are the coordinates of the center and
is the radius.
Now, we are given the equation of this circle as follows:
(2)
And we have to write it in the format of equation (1). So, let's begin by applying common factor 2 in the left side of the equation:
(3)
Rearranging the equation:
(4)
(5)
Now we have to complete the square in both parenthesis, in order to have a perfect square trinomial in the form of
:
<u>For the first parenthesis:</u>

We can rewrite this as:

Hence in this case
and
:

<u>For the second parenthesis:</u>

We can rewrite this as:

Hence in this case
and
:

Then, equation (5) is rewritten as follows:
(6)
<u>Note we are adding 9 and 16 in both sides of the equation in order to keep the equality.</u>
Rearranging:
(7)
At this point we have the circle equation in the center radius form 
Hence:


