Totally. Earth's climate systems are driven by the electromagnetic radiation that comes from the Sun. The incoming radiation that comes from the Sun is reflected by the clouds, passes through Earth's surface, or is even absorbed by the planet's atmosphere. The atmosphere warms thanks to the chemical reactions of larger aerosol particles in the atmosphere absorbing this radiation.
Answer/Explanation:
(1) a mutation in the coding region, resulting in an inactive protein
To check to see if there is a mutation, you could extract the DNA from the cancer cells and then perform PCR to amplify the gene of interest. You could then perform sanger sequencing and compare the sequence to the normal gene to see if a mutation is present. To test the effect of the mutation, you would want to see if an active protein has been formed.
To see if a normal sized protein has been formed, you could perform a western blot, comparing the protein band to the WT protein band. If the protein is absent or much smaller, it is likely not a functional protein.
(2) epigenetic silencing at the promoter of the gene, resulting in reduced transcription.
To check for changes in the epigenetic landscape of the promoter, you could perform chromatin immunoprecipitation by extracting the chromatin from the tumour cells and using antibodies for different chromatin marks to see what has changed between the normal cells and the tumor cells. E.g. H3K9me3, H3K27me3. You would perform a pull down with the antibody of interest and then PCR for your promoter to specifically look at changes at that gene compared to normal cells. To test DNA methylation, you could perform bisulfite sequencing.
To see how transcription is affected, you could extract RNA from the tumor and normal cells, and compare the levels of RNA between the two samples by qRT-PCR
Lets look at your first question. A food chain is a linear (line) relationship between organisms. It shows who eats what and who gets eaten. The energy is passed up the chain from one organisms to the next. A food web is a series of interconnected food chains. It can show one organism being preyed upon by several predators. The answer choice A is really referring to an energy pyramid, but it is true in any ecosystem that only 10% of available energy is passed to the next trophic level. B and C are both true statements as well. D is completely false because 90% of energy is lost, not retained. So with that said, there is more than one correct answer here. I have included a diagram so you can see the difference between the two.
For Question 8, the key to understanding this is that sunlight is the main source of energy for any ecosystem. Plants (autotrophs) use the sunlight to convert it to sugars (glucose) which is a compound that heterotrophs can utilize. This process is called photosynthesis. :-)
Question 9: So in a food chain, you typically start with the producers (plants), then to the primary consumer, then secondary consumer, then tertiary consumer, and in some cases you may have a quaternary consumer. That is 4 links. However, we are forgetting the role of decomposers at all levels of this food chain, and that would add an extra link. In summary, you wouldn't typically see more than 5 links in a food chain.
I hope all of my explanations are helpful! Good luck! :-)
The Earth is around 4.6 billion years old. Earth has a slightly squashed sphere, measuring 7,973 miles (12,756 km) in the diameter at the equator.
Answer:
Explanation:
A keystone species is the one which plays an important role in maintaining the structure of the ecosystem. On the keystone species many other species of the ecosystem are dependent upon.
The potential effects associated with the keystone species includes the following:
1. No other species will be capable of filling the same ecological niche. Hence, the dependent organisms will suffer and the ecosystem will change drastically.
2. The ecosystem will be populated by the invasive species which will affects the population of native species.