1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
2 years ago
11

Find x 8x + 14 9x + 2 A) 8 C) 11 B) 7 D) 12

Mathematics
1 answer:
solniwko [45]2 years ago
6 0
The answer is D) 12
8x +14=9x+12
8x+12=9x
12=1x
x=12
You might be interested in
Divide <br><br> (3x^2 + 9x + 7) divide by (x+2)
scZoUnD [109]

Answer:

The remainder is: 3x+3

The quotient is: 1

Step-by-step explanation:

We need to divide

(3x^2 + 9x + 7) by (x+2)

The remainder is: 3x+3

The quotient is: 1

The solution is attached in the figure below.

3 0
3 years ago
Read 2 more answers
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Cross-multiplication is helpful in: a. quadratic equations c. linear equations b. solving proportions d. word problems
Romashka [77]

Answer:

Cross multiplying fractions helps us to see if numbers are equal, and if not, which is bigger and which is smaller. But that is not its only use. Cross multiplying fractions can help us to solve for unknown variables in fractions.

Step-by-step explanation:

3 0
1 year ago
Read 2 more answers
25 percent of 60 students in a class failed in the test. how many students failed the test​
Alik [6]

Answer:

15 students

Step-by-step explanation:

25% = 1/4, so you can just do 1/4 of 60 or 1/4 * 60. 60/4 = 15 students.

5 0
3 years ago
Read 2 more answers
What is 4000,000 rounded to the nearest ten point housads
wolverine [178]

You have the comma in the wrong place.

It's 4,000,000 NOT 4000,000.

Round[4,000,000, 10]

Answer: 4 million

7 0
3 years ago
Other questions:
  • Two scuba divers, Jim and Tara, are 20m apart below the surface of the water. They both spot a shark that is below them. The ang
    12·1 answer
  • PLZ HURRY IT'S URGENT!!
    12·1 answer
  • 5/8 + 3/4<br> _________<br> -2/3 - 5/6<br><br><br> What does it equal? Please solve.
    6·1 answer
  • Plz answer correctly for me<br><br><br> THANK YOU
    9·1 answer
  • - ( x - 1 ) = -4x - 2
    9·1 answer
  • What is the area of the triangle?
    9·1 answer
  • Joe rolls a six-sided number cube and flips a coin. What is the probability that he rolls an odd number and flips a head on the
    8·2 answers
  • David earns $7.75 per hour working at a local fast food restaurant. Last week David worked 19.2 hours. How much money did David
    11·1 answer
  • Explain how to change 86% into an equivalent ratio written in simplest form
    14·1 answer
  • 5th grade math. correct answer will be marked brainliest
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!