Specific heat capacity is the energy needed to raise the temrature of a substance of mass of 1kg by 1kelvin Q= Mc (delta) T delta T = change in temprature M = mass c= specific heat capacity q = energy if you take everything except C to be one Q will get bigger as C gets bigger
In resonance structures, the chemical connectivity in the molecule is same but the distribution of electrons are different around the structure. They are created by moving electrons in double or triple bonds, and not atoms.
Phenol,
and methanol,
both are alcohols that contain an
group attached to carbon atom.
Due to loss of 1
from phenol, it forms phenoxide anion and due to presence of double bond in the benzene ring the negative charge on the oxygen atom (which represents electrons) will resonate with double bonds of benzene ring as shown in the image. The resonance-stabilized phenoxide ion is more stable. Whereas when methanol lose 1
it forms methoxide anion and there are no such electrons present in the structure of methoxide that will result in the movement of electron. Since, due to resonance-stabilized phenoxide ion is more stable than methoxide ion, so it is a stronger acid.
The structures of the anions resulting from loss of 1
from phenol and methanol is shown in the image.
Answer:
1.82x10⁻¹⁹Joules is the energy of the photon that is absorbed by the electron.
Explanation:
The energy of a photon is given by the equation:
E = h×ν
<em>Where E is energy of the photon in Joules.</em>
<em>h is Planck's constant (6.6262x10⁻³⁴Js)</em>
<em>And ν is frequency of the photon (In Hz = s⁻¹)</em>
<em />
The frequency of the photon is 2.74x10¹⁴Hz. That means its energy is:
E = 6.6262x10⁻³⁴Js × 2.74x10¹⁴s⁻¹
E =
<h3>1.82x10⁻¹⁹Joules is the energy of the photon that is absorbed by the electron</h3>
<em />
A). 4
.........................