Answer:

Explanation:
[to solve for y, first use the properties of equality to simplify the equation]
5y + 3 = 8y − 5 + 2y
5y + 3 = (8y + 2y) – 5
[regroup the like terms of y together: commutative property of equality ; adding in a different order will still give you the same result]
5y + 3 = 10y – 5
[combine like terms]
5y + 3 = 10y – 5

[subtract 3 from both sides in order to eliminate the constant term on the left side: subtraction property of equality]
5y = 10y – 8
–10y –10y
[subtract 10 from both sides in order to eliminate the variable term: subtraction property of equality]
-5y = -8
÷(-5) ÷(-5)
[divide both sides by -5 to cancel out the coefficient of y: division property of equality]
y = 8/5
Another number that could be in the pattern is the number 8
135 is your answer...................................................................
Answer:
<h3>
(2, 124)</h3>
Step-by-step explanation:
f(x) = a(x - h)² + k - the vertex form of the equation of the parabola with vertex (h, k)
![f(x) = -16x^2+ 64x + 80\\\\f(x) = -16(x^2- 4x) + 80\\\\f(x) = -16(\underline {x^2-2\cdot2x\cdot2+2^2}-2^2) + 80\\\\f(x) = -16\big[(x-2)^2-4\big] + 80\\\\f(x) = -16(x-2)^2+64 + 80\\\\\bold{f(x)=-16(x-2)^2+124\quad\implies\quad h=2\,,\quad k=124}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20-16x%5E2%2B%2064x%20%2B%2080%5C%5C%5C%5Cf%28x%29%20%3D%20-16%28x%5E2-%204x%29%20%2B%2080%5C%5C%5C%5Cf%28x%29%20%3D%20-16%28%5Cunderline%20%7Bx%5E2-2%5Ccdot2x%5Ccdot2%2B2%5E2%7D-2%5E2%29%20%2B%2080%5C%5C%5C%5Cf%28x%29%20%3D%20-16%5Cbig%5B%28x-2%29%5E2-4%5Cbig%5D%20%2B%2080%5C%5C%5C%5Cf%28x%29%20%3D%20-16%28x-2%29%5E2%2B64%20%2B%2080%5C%5C%5C%5C%5Cbold%7Bf%28x%29%3D-16%28x-2%29%5E2%2B124%5Cquad%5Cimplies%5Cquad%20h%3D2%5C%2C%2C%5Cquad%20k%3D124%7D)
<u>The vertex is </u><u>(2, 124)</u>