Elements, they’re a pure substance and can’t be broken down into simpler substances.
Step-by-step explanation:
the mean value is the sum of all values divided by how many values there are.
so,
(3 + -5 + 70 + -90 + -13) / 5 = -35/5 = -7
-7° F is the mean temperature of the 5 cities.
56 what they said yeeeeeee
Answer:
Use a calculator but it’s twenty years
Step-by-step explanation:
Go online searc calculator then pérchese one that has those stuff it’s only two hundred to one hundred dollars
Answer:
The probability that it will choose food #2 on the second trial after the initial trial = 0.3125
Step-by-step explanation:
Given - A lab animal may eat any one of three foods each day. Laboratory records show that if the animal chooses one food on one trial, it will choose the same food on the next trial with a probability of 50%, and it will choose the other foods on the next trial with equal probabilities of 25%.
To find - If the animal chooses food #1 on an initial trial, what is the probability that it will choose food #2 on the second trial after the initial trial?
Proof -
By the given information, we get the stohastic matrix
![H = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]](https://tex.z-dn.net/?f=H%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D)
As we know that,
The matrix is a Markov chain 
Let
The initial state vector be
![x_{0} = \left[\begin{array}{ccc}1\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=x_%7B0%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
we choose this initial vector because given that If the animal chooses food #1 on an initial trial.
Now,
![x_{1} = Hx_{0} \\ = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]\left[\begin{array}{ccc}1\\0\\0\end{array}\right] \\= \left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right]](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20Hx_%7B0%7D%20%5C%5C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D)
∴ we get
![x_{1} = \left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right]](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D)
Now,
![x_{2} = Hx_{1} \\ = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]\left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right] \\= \left[\begin{array}{ccc}0.25+0.0625+0.0625\\0.125+0.125+0.0625\\0.125+0.0625+0.125\end{array}\right]\\= \left[\begin{array}{ccc}0.375\\0.3125\\0.3125\end{array}\right]](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20Hx_%7B1%7D%20%5C%5C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.25%2B0.0625%2B0.0625%5C%5C0.125%2B0.125%2B0.0625%5C%5C0.125%2B0.0625%2B0.125%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.375%5C%5C0.3125%5C%5C0.3125%5Cend%7Barray%7D%5Cright%5D)
∴ we get
![x_{2} = \left[\begin{array}{ccc}0.375\\0.3125\\0.3125\end{array}\right]](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.375%5C%5C0.3125%5C%5C0.3125%5Cend%7Barray%7D%5Cright%5D)
∴ we get
The probability that it will choose food #2 on the second trial after the initial trial = 0.3125