In order to easily discern which graph is a proper representation of 6x + 4y = 8, you first need to convert the equation to y = mx+ b, also known as slope-intercept form. Here's how you can do this:
6x + 4y = 8
4y = -6x + 8
y = -1.5x + 2
The +2 tells you that your line will intercept the vertical y-axis at (0, 2). This narrows it down to graphs a and d. Then, because you have a NEGATIVE number in front of your x (it's -1.5), you can tell that your graph will be going down as it moves from left to right. This leaves you with graph d as your answer!
The critical points of <em>h(x,y)</em> occur wherever its partial derivatives
and
vanish simultaneously. We have

Substitute <em>y</em> in the second equation and solve for <em>x</em>, then for <em>y</em> :

This is to say there are two critical points,

To classify these critical points, we carry out the second partial derivative test. <em>h(x,y)</em> has Hessian

whose determinant is
. Now,
• if the Hessian determinant is negative at a given critical point, then you have a saddle point
• if both the determinant and
are positive at the point, then it's a local minimum
• if the determinant is positive and
is negative, then it's a local maximum
• otherwise the test fails
We have

while

So, we end up with

Answer:
i have no idea what to do
Step-by-step explanation: