Answer:
The minimum value of f(x) is -21 and it occurs at x = 1
Step-by-step explanation:
f(x) =3x^2-6x-18
Factor out the greatest common factor out of the first two terms
f(x) =3(x^2-2x)-18
Complete the square
-2x/2 =-1 (-1)^2 = 1
Add 1 (But remember the 3 out front so we are really adding 3 so we need to subtract 3 to remain balanced)
f(x) = 3(x^2 -2x+1) -3 -18
f(x) = 3(x-1)^2 -21
This is vertex form
f(x) = a(x-h)^2 +k where (h,k) is the vertex and a is a constant
The vertex is (1,-21)
Since a > 0 this opens upward and the vertex is a minimum
The minimum value of f(x) is -21 and it occurs at x = 1
(2x + 3y = 12) x (-2)
(4x - 3y = 6) x 1
-4x - 6y = -24
4x - 3y = 6
You can cancel out the x values by adding the two equations together.
(-4x + 4x) + (-6y - 3y) = (-24 + 6)
-9y = -18
y = 2
Solve for x now...
4x - 3(2) = 6
4x - 6 = 6
4x = 12
x = 3
Check... (x = 3, y = 2)
2(3) + 3(2) = 12
6 + 6 = 12
12 = 12 <- this works!
4(3) - 3(2) = 6
12 - 6 = 6
6 = 6 <- this works!
Answer:
x
Step-by-step explanation:
<span> convert the mixed numbers to improper fractions, multiply all numerators, multiply all denominators, and convert your answer to a mixed number (if greater than 1) in lowest terms</span>
Answer:
Prove if certain shapes fit the criteria, and if they are congruent or not
Step-by-step explanation:
Geometric proofs prove if certain shapes are congruent, whether they are not. They can also prove if sides are equal when values are not given, if a certain shape fits certain criteria, and can prove the length of certain lines when the values are not given.