Answer:
12
Step-by-step explanation:
Please mark me as brainlyest
Simplify the following:
(3 sqrt(2) - 4)/(sqrt(3) - 2)
Multiply numerator and denominator of (3 sqrt(2) - 4)/(sqrt(3) - 2) by -1:
-(3 sqrt(2) - 4)/(2 - sqrt(3))
-(3 sqrt(2) - 4) = 4 - 3 sqrt(2):
(4 - 3 sqrt(2))/(2 - sqrt(3))
Multiply numerator and denominator of (4 - 3 sqrt(2))/(2 - sqrt(3)) by sqrt(3) + 2:
((4 - 3 sqrt(2)) (sqrt(3) + 2))/((2 - sqrt(3)) (sqrt(3) + 2))
(2 - sqrt(3)) (sqrt(3) + 2) = 2×2 + 2 sqrt(3) - sqrt(3)×2 - sqrt(3) sqrt(3) = 4 + 2 sqrt(3) - 2 sqrt(3) - 3 = 1:
((4 - 3 sqrt(2)) (sqrt(3) + 2))/1
((4 - 3 sqrt(2)) (sqrt(3) + 2))/1 = (4 - 3 sqrt(2)) (sqrt(3) + 2):
Answer: (4 - 3 sqrt(2)) (sqrt(3) + 2)
Step-by-step explanation:
check the above images..
Answer: what now sorry don’t know
Step-by-step explanation:
Answer:
See the explanation
Step-by-step explanation:
We know that
f(x) = 2x⁶ + 3x⁴ - 4x³ + (1/x) - sin2x
Lets calculate the derivatives:
f'(x) = 6(2x⁵) + 4(3x³) - 3(4x²) -( 1/x²) - 2(cos2x)
f'(x) = 12x⁵ + 12x³ - 12x² - (1/x²) - 2cos2x
Similarly:
f''(x) = 60x⁴ + 36x² - 24x + (2/x³) + 4sin2x
f'''(x) = 240x³ + 72x - 24 - (6/x⁴) + 8cos2x
Rearrange:
f'''(x) - 240x³ +72x - (6/x⁴) + 8cos2x - 24
f''''(x) = 720x² + 72 + (24/x⁵) - 16sin2x
Rearrange:
f''''(x) = 720x² + (24/x⁵) - 16sin2x +72