Using the greatest common factor, it is found that the greatest dimensions each tile can have is of 3 feet.
---------------------------
- The widths of the walls are of <u>27 feet, 18 feet and 30 feet.</u>
- <u>The tiles must fit the width of each wall</u>, thus, the greatest dimension they can have is the greatest common factor of 27, 18 and 30.
To find their greatest common factor, these numbers must be factored into prime factors simultaneously, that is, only being divided by numbers of which all three are divisible, thus:
27 - 18 - 30|3
9 - 6 - 10
No numbers by which all of 9, 6 and 10 are divisible, thus, gcf(27,18,30) = 3 and the greatest dimensions each tile can have is of 3 feet.
A similar problem is given at brainly.com/question/6032811
The correct answer for the question that is being presented above is this one:
(1)
The triangle shows and equilateral triangle. Equilateral triangle has the same length of sides and angles.
60 = 1.5x
x = 40 degrees
7.1 = y + 3.4
y = 3.7 cm
(2) Isosceles Triangle
65 = 13x
x = 5 degrees
y + 2/3 = 7/8
y = 7/8 - 2/3
y = 21 - 16 / 24
y = 5/24 in
(3)
12 = x + 3.8
x = 8.2mm
Where 1/3 of the 1 section had been painted, have each section have 3 parts. So each complete section will be 3/3. Where there is 4 section with 3 parts each, we have 12 parts. Thus, you painted 1/12 of the fence.