Check the picture below to the left, let's use those sides with the law of sines
![\textit{Law of sines} \\\\ \cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{sin(14^o)}{97}=\cfrac{sin(84^o)}{XZ}\implies XZ = \cfrac{97\cdot sin(84^o)}{sin(14^o)}\implies XZ \approx 398.76 \\\\\\ \stackrel{\textit{now using SOH CAH TOA}}{cos(82^o) = \cfrac{XW}{XZ}}\implies XZcos(82^o)=XW \\\\\\ 398.76cos(82^o)\approx XW\implies 55.497\approx XW\implies \stackrel{\textit{rounded up}}{55=XW}](https://tex.z-dn.net/?f=%5Ctextit%7BLaw%20of%20sines%7D%20%5C%5C%5C%5C%20%5Ccfrac%7Bsin%28%5Cmeasuredangle%20A%29%7D%7Ba%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20B%29%7D%7Bb%7D%3D%5Ccfrac%7Bsin%28%5Cmeasuredangle%20C%29%7D%7Bc%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7Bsin%2814%5Eo%29%7D%7B97%7D%3D%5Ccfrac%7Bsin%2884%5Eo%29%7D%7BXZ%7D%5Cimplies%20XZ%20%3D%20%5Ccfrac%7B97%5Ccdot%20sin%2884%5Eo%29%7D%7Bsin%2814%5Eo%29%7D%5Cimplies%20XZ%20%5Capprox%20398.76%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bnow%20using%20SOH%20CAH%20TOA%7D%7D%7Bcos%2882%5Eo%29%20%3D%20%5Ccfrac%7BXW%7D%7BXZ%7D%7D%5Cimplies%20XZcos%2882%5Eo%29%3DXW%20%5C%5C%5C%5C%5C%5C%20398.76cos%2882%5Eo%29%5Capprox%20XW%5Cimplies%2055.497%5Capprox%20XW%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Brounded%20up%7D%7D%7B55%3DXW%7D)


- <u>We </u><u>have </u><u>given </u><u>two </u><u>linear </u><u>equations </u><u>that</u><u> </u><u>is </u><u>2x </u><u>-</u><u> </u><u>3y </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>and </u><u>x</u><u> </u><u>+</u><u> </u><u>3y </u><u>=</u><u> </u><u>1</u><u>2</u><u> </u><u>.</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u><u>and </u><u>y </u><u>by </u><u>elimination </u><u>method</u><u>. </u>



<u>Multiply </u><u>eq(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>by </u><u>2</u><u> </u><u>:</u><u>-</u>


<u>Subtract </u><u>eq(</u><u>1</u><u>)</u><u> </u><u>from </u><u>eq(</u><u>2</u><u>)</u><u> </u><u>:</u><u>-</u>





<u>Now</u><u>, </u><u> </u><u>Subsitute</u><u> </u><u>the </u><u>value </u><u>of </u><u>y </u><u>in </u><u>eq(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>





Hence, The value of x and y is 2 and 10/3
Answer:
C. 150
Step-by-step explanation:
It's right on Plato.
Answer:
12-12=21
Step-by-step explanation:
i think it is that
The rational numbers are the positive counting numbers: 1, 2, 3, 4, . . .
The whole number are the natural numbers plus 0: 0, 1, 2, 3, . . .
The irrational numbers are the numbers which cannot be expressed in the form a/b where a and b are integers. They are usually in the form of a non recurring and non terminating decimals.
The integers complices of both the negative and the positive whole numbers.
In winter, the temperature of Alaska usually drop to negative numbers.
Therefore, the <span>set of numbers is the most reasonable to describe the temperature in alaska during the winter is the set of integers.</span>