1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nexus9112 [7]
3 years ago
13

ILL GIVE BRAINLIST 16) Find m

Mathematics
1 answer:
oee [108]3 years ago
3 0

The answer is:  " m∠TPQ = 124°  " .

_____________

<u>Step-by-step explanation</u>:

We are asked to find: "m" (the "measurement");

specifically, " m∠TPQ "  ;

_____________

 →  which, from the diagram given:

         is represented by "(11x + 14)" .

_____________

 → If we can solve for the value of "x" ; then we can solve for:

   "(11x + 14)" ;  i.e. " m∠TPQ " .

_____________

Let us consider " ∡QPR " ;

    → which is the "supplementary angle" to:  " ∡TPQ " :

_____________

That is:  " m∠TPQ + m∠QPR  =  180° " .

_____________

<u>Note</u>:  By definition, "supplementary angles" add up to: "180° " ;

                              → even if multiple angles are involved.

_____________

<u>Note</u>:  "∡TPQ " and " ∡QPR " —

                        together — form a "straight line" ;

                        →  which means that the 2 (two) angles are                    

                            "supplementary" ; and:

                        →  which means that the:  sum of the measurements of                        

                             the  " 2 (two) angles " —equal:  " 180° .

   {<u>Note</u>:  by "forming a straight line" ;  for this purpose, this criterion also is satisfied by forming a "straight line on a line segment" —even if that "line segment" is actually:

   1)  an actual "line segment" ;  or:  

   2)  a portion of a "line segment" ;

   3)  a "line segment" that is actual part of a "true geometry line" ; or

                                                                    "[geometric] ray".}

_____________

So: We have:

_____________

→  " m∠TPQ  +  m∠QPR  = 180 " ;

_____________

Given:  " m∠TPQ = (11x + 14) " ;

_____________

Plug in this value for:  " m∠TPQ " ;

_____________

→  " (11x + 14)   +  m∠QPR  = 180 " ;   Solve for: " m∠QPR " :

_____________

→  Subtract:  "(11x + 14)" ; from Each Side of the equation:

    to isolate:  " m∠QPR " ;  on one side of the equation;

     & to solve for:  " m∠QPR " ; <em><u>in terms of </u></em><u>"</u><u>x</u><u>"</u> :

_____________

→  " (11x + 14)   +  m∠QPR  − (11x + 14) = 180 − (11x + 14) " ;

<u>Note</u>:  On the "left-hand side" of the equation:

 The:  "(11x + 14)" 's  cancel out to "0" ;

    {since:  (11x + 14)  −  (11x + 14) = 0 ;

                → {i.e. any value, minus that same value, equals: "zero".}.

 →  And we have:  " m∠QPR =  180 − (11x + 14) " ;

_____________

<u>Note</u>:  " 180 − (11x + 14) " ;

  ↔  Treat as:

         " 180 − 1 (11x + 14) " ;

             → {since multiplying by "1" results in the same value.}.

<u>Consider the following portion</u>:

        "  − 1 (11x + 14) " ;

_____________

Note the "distributive property" of multiplication:

_____________

            →  a(b +c) = ab + ac  ;

_____________

Likewise:  " − 1 (11x + 14)  = (-1*11x) + (-1 *14) ;

                                    = (-11x)  + ( -14) '  

                                    =  - 11x − 14 ;  

        {Since:  "Adding a negative" results in the same value as:

                    "Subtracting a positive."}.

_____________

Now, bring down the "180" ; and rewrite the expression:

     →  " 180 − 11x − 14  " ;

          →  Combine the "like terms" :

                 + 180 − 14  =  + 166 ;

Rewrite the expression as:

     →  " 166 − 11x " ;

_____________

Now, we can rewrite the entire equation:

  " m∠QPR  =  166 − 11x " ;

_____________

Now, consider the triangle:  <em>ΔQRP</em> ;

with its 3 (three) sides—as shown in the image attached:

<u>Note</u>:

By definition:

All triangles:

____________

1) have 3 (three) sides;

2) have 3 (three) angles;  and:

3) have angles in which the sum of the measurements of those angles add up to 180°.

_____________

So:  For <em>ΔQRP</em> ; which is shown in the image attached:

_____________

Let us consider the measurements of Each of the 3 (three) angles of that triangle:

_____________

1)  m∡Q = "(5x + 18)" ; (given);

2)  m∡R  = " 56 " ; (given) ;

3)  m∡P —[within the triangle] = "(166 − 11x)" ; (calculated above}.

_____________

We want to find the value for "x" ;

_____________

So:  since all triangles, by definition; have 3 (three) angles with measurements that add up to 180° ;

 → Let us add up the measurements of each of the 3 (three) angles of:

  ΔQRP ;  and make an equation by setting this sum "equal to:  180 ."

_____________

   →  " m∡Q  + m∡R + m∡P = 180 " ;

   →  (5x + 18) + 56) + (166 - 11x) = 180 ;

   →  5x + 18 + 56 + 166 − 11x = 180 ;

On the "left-hand side" of the equation:

 Combine the "like terms" to simplify further:

         +5x − 11x  =  − 6x ;

         + 18 + 56 + 155 = 240 ;

And rewrite the equation:

_____________

  - 6x + 240 − 240 = 180 − 240 ;

to get:

  - 6x   =  - 60 ;  

Now, divide Each side of the equation by:  "( -6)" ;

 to isolate: "x" on one side of the equation;

    & to solve for "x" ;

_____________

   - 6x / 6    =  - 60 / -6  ;

to get:

     "  x  = 10 " .

_____________

Now, the question asks for:

" the measurement for angle TPQ ";

  → {that is;   " m∠TPQ " } ;

  →  which is:  " (11x + 14) " ;

Since we know that:  " x = 10 " ;

 We can plug in our "10" as our value for "x" ; and solve accordingly:

_____________

 →  " m∠TPQ = (11x + 14) =  (11*10) + 14 = 110 + 14 = 124 .

_____________

The answer is:  " m∠TPQ  =  124°  " .    

_____________

Hope this answer—and explanation—is helpful!

  Best wishes!

_____________

You might be interested in
Can a trapezoid be a hexagon
NNADVOKAT [17]

Answer:

No. A trapezoid is a shape with four sides, while a hexagon is a shape with six sides.

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find the slope of the line 7x+4y=10
Fittoniya [83]

Answer:

The slope is -7/4

Step-by-step explanation:

∵ 7x + 4y = 10

∵ y = mx + c ⇒ where m is the slope of the line

∴ Re-arrange the equation

∴ 4y = 10 - 7x ⇒ ÷4

∴ y = 10/4 - (7/4) x

∴ y = 5/2 - (7/4) x

∴ The slope is -7/4

3 0
4 years ago
What is the distance between points A and B?
diamong [38]

Answer:

Therefore, the distance between points A and B is approximately equal to 6.4 inches.

6 0
3 years ago
Read 2 more answers
An item has a listed price of $35. If the sales tax rate is 9%, how much is the sales tax (in dollars)?
olga_2 [115]

Answer:

$3.15

Step-by-step explanation:

tax is 9% or .09 of the cost

$35(.09) = $3.15

3 0
3 years ago
Lila's Tea Shop has caffeinated tea
kolbaska11 [484]

Answer:

28 caffinated  teas

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • Write a fraction less than 1 with a demoninator of 6 that is greater than 3/4?
    14·1 answer
  • {29, 29, 29, 28, 28, 27}
    6·1 answer
  • 1+4=5; 2+5=12; 3+6=21; 8+11=?
    6·2 answers
  • a triangular pyramid has a volume 150 cubic centimeters. which of the following represents the volume of a triangular prism with
    13·1 answer
  • Help pls I’m #######} my teacher gave this to me without knowing nun
    14·1 answer
  • Factor completely (5x+4)^2-25​
    13·1 answer
  • Surface areas geometry help :)
    15·1 answer
  • Which is the sum of 3.15 × 107 + 9.3 × 106? Write your answer in scientific notation.
    13·1 answer
  • Please Help!!<br> Thanks!!
    5·2 answers
  • Josie measured the diameter of the base of her cup if the diameter of her cup measure 12cm what is the measure of the radius
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!