F(x) sine curve with points at 0, 0 and pi over 2, 4 and pi, 0 and 3 pi over 2, negative 4 and 2 pi,0
g(x) x y 0 0 pi over 2 2 π 0 3 pi over 2 −2 2π 0
h(x) = 2 sin x + 3 Which function has the greatest rate of change on the interval from x = 0 to x = pi over 2
The change of f(x) from 0 to π/2 is 4
The change of g(x) from 0 to π/2 is 2
We can rule out g(x).
As for h(x):
h(0) = 2 sin(0) + 3 = 3
h(π/2) = 2(sin(π/2)) + 3 = 2 + 3 = 5
Change of h(x) from 0 to π/2 is 2.
Greatest change between 0 and π/2 is found with f(x)
Are you wanting to solve for x? If so:
4x + 7 = 35
We want to isolate the variable, so subtract 7 from both sides. You will get:
4x = 28
Now, divide each side by 4 to get X by alone. This will give you:
x = 7
I hope this helped.
Answer:
Step-by-step explanation:
Hello!
a)
The given information is displayed in a frequency table, since the variable of interest "height of a student" is a continuous quantitative variable the possible values of height are arranged in class intervals.
To calculate the mean for data organized in this type of table you have to use the following formula:
X[bar]= (∑x'fi)/n
Where
x' represents the class mark of each class interval and is calculated as (Upper bond + Lower bond)/2
fi represents the observed frequency for each class
n is the total of observations, you can calculate it as ∑fi
<u>Class marks:</u>
x₁'= (120+124)/2= 122
x₂'= (124+128)/2= 126
x₃'= (128+132)/2= 130
x₄'= (132+136)/2= 134
x₅'= (136+140)/2= 138
Note: all class marks are always within the bonds of its class interval, and their difference is equal to the amplitude of the intervals.
n= 7 + 8 + 13 + 9 + 3= 40
X[bar]= (∑x'fi)/n= [(x₁'*f₁)+(x₂'*f₂)+(x₃'*f₃)+(x₄'*f₄)+(x₅'*f₅)]/n) = [(122*7)+(126*8)+(130*13)+(134*9)+(138*3)]/40= 129.3
The estimated average height is 129.3cm
b)
This average value is estimated because it wasn't calculated using the exact data measured from the 40 students.
The measurements are arranged in class intervals, so you know, for example, that 7 of the students measured sized between 120 and 124 cm (and so on with the rest of the intervals), but you do not know what values those measurements and thus estimated a mean value within the interval to calculate the mean of the sample.
I hope this helps!
Answer:
Greatest vessel to fill each in exact number of times is 6 litres
Step-by-step explanation:
To solve this, we will find the greatest common factor of 36,18 and 72
Thus;
Their prime factors are;
18: 2, 3
36: 2, 2, 3, 3,
72: 2, 2, 2, 3, 3
The factors common to all of them are 2 & 3.
Thus;
GCF = 2 × 3 = 6
Add all of the percents up and then divide by 3. You get 89.6%