I think it is the last one because the two top line at the top must be the same length
Answer:
Fourth degree polynomial (aka: quartic)
====================================================
Work Shown:
There isnt much work to show here because we can use the fundamental theorem of algebra. The fundamental theorem of algebra states that the number of roots is directly equal to the degree. So if we have 4 roots, then the degree is 4. This is assuming that there are no complex or imaginary roots.
-------------------
If you want to show more work, then you would effectively expand out the polynomial
(x-m)(x-n)(x-p)(x-q)
where
m = 4, n = 2, p = sqrt(2), q = -sqrt(2)
are the four roots in question
(x-m)(x-n)(x-p)(x-q)
(x-4)(x-2)(x-sqrt(2))(x-(-sqrt(2)))
(x-4)(x-2)(x-sqrt(2))(x+sqrt(2))
(x^2-6x+8)(x^2 - 2)
(x^2-2)(x^2-6x+8)
x^2(x^2-6x+8) - 2(x^2-6x+8)
x^4-6x^3+8x^2 - 2x^2 + 12x - 16
x^4 - 6x^3 + 6x^2 + 12x - 16
We end up with a 4th degree polynomial since the largest exponent is 4.
Answer:
the second one is the anwser
Step-by-step explanation:
Answer:
3x - 8
Step-by-step explanation:
the factors of the following equation
are:

If you look the equation you can notice that you don´t have a term like -48x or 48x, so the factors must have a positive and negative sign.
Remember first you need to multiply each segment and finally add.
= 