Using row 4:
<span>coefficients are: 1, 4, 6, 4, 1 </span>
<span>a^4 + a^3b + a^2b^2 + ab^3 + b^4 </span>
<span>Now adding the coefficients: </span>
<span>1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4 </span>
<span>Substitute a and b: </span>
<span>a = 4x </span>
<span>
b = -3y </span>
<span>1(4x)^4 + 4(4x)^3(-3y) + 6(4x)^2(-3y)^2 + 4(4x)(-3y)^3 + 1(-3y)^4 </span>
<span>Now simplify the above: </span>
<span>256x^4 - 768x^3y + 864x^2y^2 - 432xy^3 + 81y^4 </span>
The total arc length around a circle is 360 degrees. So, these 3 arc with expressions given will all add up to 360.
(-2 + 8x) + (10x + 10) + (10x - 12) = 360
28x - 4 = 360
28x = 364
x = 13
Now that we know the value of x, we can plug that value into the expression for arc LM and solve for the measure.
LM = 10x - 12
LM = 10(13) - 12
LM = 118 degrees
Hope this helps! :)
Answer:
12.124-3
Step-by-step explanation:




Answer:
34.7791 [unit²].
Step-by-step explanation:
1) area of the circle is:
πr²;
2) area of the regular polygon is:
6*r²√3*0.25=1.5√3r²;
3) the required area:
πr²-1.5√3r²=r²(π-1.5*√3)=64*(3.1415-1.5*1.7321)=34.7791