I think 8.0 is the answer
Answer:
x = 19.5
Step-by-step explanation:
-2x + 7 = -32 (subtract 7 on both sides)
-7 -7
-2x = -39 (Divide by -2)
x = 19.5
Equation::
value + value = value
80x + 60(50-x) = 74*50
----
80x + 60*50 - 60x = 74*50
----
20x = 14*50
x = 35 lbs (amt. of 80 cent tea to use)
50-x = 15 lbs (amt. of 60 cent tean to use)
Answer:
Write the equation then try the equation with the numbers from choice A then go down. do all of them. which ever ends up equal is the right answer.
Step-by-step explanation:
I will do the math but you try it first, then ill do the math step by step in the comments, but only if you try it first. im trusting you to try.
5 children so you have 2^5=32 possibilities to "assign" genders
P(3 girls):
how many possibilities are there to "assign" the 3 girl-genders to the 5 children? the first girl has 5 possibilities then the next 4, 3 -> 5*4*3=60
but these possibilities include orders of assigned genders, while children 1-5 might differ the gender "girl" is always the same so we have the remove the orderings of the 3 girl-gender assignments which is 3*2*1=6
if we divide 60/6 we get 10 possibilities to have 3 girls, so what is the resulting chance? the 10 possibilities divided by the total 32 possibilities: 10/32=5/16=P(3 girls)=P(2 boys)
this is a bit of lengthy way of saying "use the binomial coefficient" equation/explaining it a bit which is (n!)/(k!(n-k)!) with n=5, k=3:
5*4*3*2*1/((3*2*1)*(2*1))=
5*4*3*2/(3*2*2)=
5*4*3*2/(3*4)=
5*2=
10 possibilities again
P(girls>=4)=P(boys<=1)=P(boys=1)+P(boys=0)
(or P(girls=4)+P(girls=5))
P(boys=0) is the easy case: simply multiply the chance of getting a girl 5 times: (1/2)^5=1/32
P(boys=1)= again the binomial coefficient with n=5 and k=1:
5*4*3*2*1/((1)*(4*3*2*1))=
5*4*3*2/(4*3*2)=
5 possibilities
so the P(boys=0)=1 possibility + P(boys=1)=5 possibilities totals to 6 possibilities
again the chance is the 6 possibilities divided by all 32 possibilities: 6/32=3/16
P(alternate gender starting with boy): when thinking about the possibilities then there is only a single way to build that order: bgbgb, so one possibility
knowing there is only one way we already know P(alternate...)=1/32 by again dividing by the total amount of possibilities
the alternative way would be to multiply P(boy)*P(girl)*P(boy)*P(girl)*P(boy)=(1/2)^5= 1/32 again