Answer:

Step-by-step explanation:
Notice that you are given an isosceles right-angle triangle to solve, since each of its two acute angles measures
. Then such means that the sides opposite to these acute angles (the so called "legs" of this right angle triangle) must also be of the same length (x).
We can then use the Pythagorean theorem that relates the square of the hypotenuse to the addition of the squares of the triangles legs:

We use just the positive root, since we are looking for an actual length. then, the requested side is:

Answer:
4a + 2b + 1/4 c.
Step-by-step explanation:
1/4(16a+8b+c)
= 1/4 * 16a + 1/4 * 8b + 1/4 * c
= 4a + 2b + 1/4 c.
Answer: 231,469.335
Step-by-step explanation:
Answer:
- See the graphs attached and the explanation below
Explanation:
The most simple sine function, considered the parent function, is:

That function has:
- Midline, also known as rest or equilibrium position: y = 0
- Minimum: - 1
- Maximum: 1
- Amplitude: the distance between a minimum or a maximum and the midline = 1
- period: the interval of repetition of the function = 2π
The more general sine function is:

That function has:
- Midline: y = D (it is a vertical shift from the parent function)
- Minimum: - A + D
- Maximum: A + D
- Amplitude: A
- period: 2π/B
- phase shift: C (it is a horizontal shift of the from the parent function)
Now, you have to draw the sine function with the given key features:
- Period = 4 ⇒ 2π/B = 4 ⇒ B = π/2
- midline y = - 1 ⇒ D = - 1
Substitute the know values and use the y-intercept to find C:

Substitute (0, -1)

Hence, the function to graph is:

To draw that function use this:
- Maxima: 3(1) - 1 = 3 - 1 = 2, at x = 1 ± 4n (n = 0, 1, 2, 3, ...)
- Minima: 3(-1) - 1 = - 3 - 1 = -4
- y-intercept: (0, - 1)
- x-intercepts: the solutions to 0 = 3sin(πx/2) = - 1
- first point of the midline: (0, -1) it is the same y-intercept
With that you can understand the graphs attached.
Since there is an addition symbol in the middle all you need to do is combine like terms/add. Your final answer should be:
p= 5s+5