Answer:
x = 181 and y = 97
Step-by-step explanation:
let called the first number is x
the second number would be called y
We are given that:
x + y = 278 (1)
x = y + 84 (2)
Let change x in (2) into (1):
y + 84 + y = 278
2y + 84 = 278
Subtract 84 from both side, we got:
2y + 84 - 84 = 278 - 84
2y + 0 = 194
Divide both side by 2, we got:
2y / 2 = 194 / 2
y = 97
Because y = 97 and x + y = 278 so x would equal:
x + 97 = 278
Subtract 97 from both side, we got:
x + 97 - 97 = 278 - 97
x + 0 = 181
x = 181 and y = 97
Hope this helped :3
Answer:
oookkk
Step-by-step explanation:
oofookkjjjnnn
ooo6
Answer:
62
Step-by-step explanation:
Is RS perpendicular to DF? Select Yes or No for each statement. R (6, −2), S (−1, 8), D (−1, 11), and F (11 ,4) R (1, 3), S (4,7
guajiro [1.7K]
I'll do the first one to get you started.
Find the slope of the line between R (6,-2) and S (-1,8) to get
m = (y2-y1)/(x2-x1)
m = (8-(-2))/(-1-6)
m = (8+2)/(-1-6)
m = 10/(-7)
m = -10/7
The slope of line RS is -10/7
Next, we find the slope of line DF
m = (y2 - y1)/(x2 - x1)
m = (4-11)/(11-(-1))
m = (4-11)/(11+1)
m = -7/12
From here, we multiply the two slope values
(slope of RS)*(slope of DF) = (-10/7)*(-7/12)
(slope of RS)*(slope of DF) = (-10*(-7))/(7*12)
(slope of RS)*(slope of DF) = 10/12
(slope of RS)*(slope of DF) = 5/6
Because the result is not -1, this means we do not have perpendicular lines here. Any pair of perpendicular lines always has their slopes multiply to -1. This is assuming neither line is vertical.
I'll let you do the two other ones. Let me know what you get so I can check your work.