Answer:
46 housewives read all three magazines.
Step-by-step explanation:
Given:
n(A) = 150
n(B) = 200
n(C) = 156
n(A∩B) = 48
n(B∩C) = 60
n(A∩C) = 52
n(A∪B∪C) = 300
so we know the relation as:
n(A∪B∪C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) + n(A∩B∩C)
∴ n(A∩B∩C) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(A∩C) - n(A∪B∪C)
= 150 + 200+ 156 - 48 - 60 - 52 - 300
= 46
Hence the number of housewives that had read all three magazine is 46.
first you do 8×12=92 then you do 92+2=94 94×12=1,128 so you save1,128 if I'm not wrong
Answer:
All work but I’d pick the 3rd one
Step-by-step explanation: