First, let me do the Mathematical part of that, and then I shall explain the theory behind it.
Mathematical part:
We are going to multiply 513 with 46. So the two partial products that we are going to choose are 40 and 6.
Multiply 513 with 6 first.
513
x46
--------------------------
18 (as 6*3 = 18)
60 (as 6*10 = 60; In 513, the digit at tenths place is 1, so 1*10=10)
3000 (as 6*500 = 3000; In 513, 5 is at hundredth place, so 5*100=500)
120 (as 40*3 = 120; since 4 is at the tenth place, so 4*10=40)
400 (as 40*10 = 400)
20000 (as 40*500 = 20000)
--------------------------
23598 (Add all of them)
Theory:
As you can see above that we have chosen the two partial products individually which are 6 and 40. Since 4 in 46 is in tenth place, we have to consider it 40 (since 4*10 = 40). One by one, we first multiply 6 with 513. Then we move to the tenth place, and multiply 513 with 40. At the end, we have added all the results we found after multiplication.
Check: If we check the multiplication result by using the calculator, we would get the same result (23598).
Another Method (instant):
513 * (40+6) = (513*40) + (513*6) = 23598.
Answer:
Step-by-step explanation:
hello :
√(5/4)= √5/ √4 =√5/2 = (1/2)√5
3+√5/4−√5 = 3+(1/2)√5 so : a=3 and b= 1/2
Answer:
156 buttons in each container
Step-by-step explanation:

Answer:
Srue what's your question
Step-by-step explanation:
Answer:
Brian has $776 more account in his account than Chris.
Step-by-step explanation:
Compound interest Formula:

= A-P
A= Amount after t years
P= Initial amount
r= Rate of interest
t= Time in year
Given that,
Brian invests $10,000 in an account earning 4% interest, compounded annually for 10 years.
Here P = $10,000 , r= 4%=0.04, t=10 years
The amount in his account after 10 years is

=$14802.44
≈$14802
Five years after Brian's investment,Chris invests $10,000 in an account earning 7% interest, compounded annually for 5 years.
Here P = $10,000 , r= 7%=0.07, t=5 years
The amount in his account after 5 years is

=$14025.51
≈$14026
From the it is cleared that Brian has $(14802-14026)=$776 more account in his account than Chris.