Answer:
Mo(CO)5 is the intermediate in this reaction mechanism.
Explanation:
The reaction mechanism describes the sequence of elementary reactions that must occur to go from reactants to products. Reaction intermediates are formed in one step and then consumed in a later step of the reaction mechanism.
In this reaction mechanism, Mo(CO)5 is the product of 1st reaction and then it is used as a reactant in 2nd reaction. So, Mo(CO)5 is the reaction intermediates.
The overall balanced equation would be,
Mo(CO)6 + P(CH3) ↔ CO + Mo(CO)5 + P(CH3)3
Atoms do not always contain the same number of electrons and protons, although this state is common. When an atom has an equal number of electrons and protons, it has an equal number of negative electric charges (the electrons) and positive electric charges (the protons). The total electric charge of the atom is therefore zero and the atom is said to be neutral. In contrast, when an atom loses or gains an electron (or the rarer case of losing or gaining a proton, which requires a nuclear reaction), the total charges add up to something other than zero.
Answer:
See Explanation
Explanation:
In electrophilic aromatic substitution, the benzene ring undergoes substitution when it is reacted with suitable electrophiles.
The products of electrophilic aromatic substitution depends on the substituents already present on the benzene ring. Some substituents activate the ring towards electrophilic substitution and direct the incoming electrophile to the ortho and para positions on the ring while some substituents deactivate the benzene ring towards electrophilic substitution and direct the incoming electrophlle to the meta position on the ring.
The amide substituent is moderately activating and is an ortho, para director hence the products shown in the mage attached to this answer.
Answer:
Positive: a and b
Negative: c
Explanation:
The entropy (S) is the measure of the randomness of the system, and it intends to increase. The randomness can be determined by the energy of the molecules, their velocity and how distance they are between the other molecules.
When the entropy increases, ΔS is positive, when the entropy decreases, ΔS is negative. So, when gasoline mix with air in a car engine, the process intends to continue, the randomness increases and ΔS is positive. When hot air expands, the distance between the molecules increases, so ΔS is positive.
But, when humidity condenses, the molecules stay closer, so there's a decrease in the randomness, then ΔS is negative.