(xA+xB)/2, (yA+yB)/2 = (4,3)
(xA+xB)/2 = 4
(-2+xB) = 8 --> xB = 8+2 --> xB = 10
(yA+yB)/2 = 3
(6+yB) = 6 --> yB = 6-6 --> yB = 0
B = (10,0)
-7x2p= -14p
-7x-4k= 28k (negative x negative = positive
-14p+28k=....
2xp=2p
2x1=2
-14p+28k+2p+2
(-14p+2p) +28k+2
-12p+28k+2
or
28k-12p+2
pertama menemukan tempat di mana dua persamaan mencegat<span>
2x+5y=1
x-3y=-5
</span>
kalikan persamaan kedua ( x - 3y = -5 ) oleh -2
-2x+6y=10
<span>tambahkan dua persamaan bersama-sama
2x+5=1
<u>-2x+6y=10 +</u>
0x+11y=11
</span>
11y=11
<span>membagi kedua sisi dengan 11
y=1
</span>
subsitute y = 1 untuk y dalam semua persamaan untuk memecahkan x
x-3y=-5
x-3(1)=-5
x-3=5
x=8
x=8
y=1
(x,y)
<span>titik persimpangan adalah ( 8,1 )
</span>
<span>untuk membuat menemukan garis tegak lurus lebih mudah , mengkonversi persamaan terakhir ke bentuk lereng - intercept
2x-y+5=0
2x+5=y
y=2x+5
</span>
<span>garis tegak lurus memiliki kemiringan yang , bila dikalikan dengan kemiringan garis lainnya , memberikan -1
y=mx+b
m=</span>lereng
y=2x+5
2 <span>dikalikan x=-1
x=-1/2
y=-1/2x+b
</span><span>subsitute ( 8,1 ) ke dalam persamaan dan memecahkan untuk b
x=8
y=1
1=-1/2(8)+b
1=-4+b</span>
tambahkan 4 untuk kedua belah pihak
5=b
<span>persamaan adalah y=-1/2+5
</span>
<span>( Catatan : Saya menggunakan google translate )</span>
Answer:
30°
Step-by-step explanation:
Call the other end of the chord point B and the center of the circle point O. Then triangle AOB is an equilateral triangle, since OA = OB = AB.
Angle OAB is the internal angle of that triangle, so is 60°. Since OA is perpendicular to the tangent line (makes an angle of 90°), The angle between the tangent line and the chord must be ...
90° - 60° = 30°
___
The other way you know this is that central angle AOB is 60°, and the tangent-to-chord angle is half that, or 30°.
_____
One way to remember the angle relationship between a tangent line and a chord is this:
Consider a point C on long arc AB. The measure of inscribed angle ACB is half the measure of central angle AOB, no matter where C is on the circle. (If C happens to be on the short arc AB, then central angle AOB is a reflex angle, but the relationship still holds.) Consider what happens when C approaches A. The angle at vertex C is still the same: 1/2 the measure of central angle AOB. This remains true even in the limit when points A and C become coincident and line AC is a tangent at point A.
Answer:
Step-by-step explanation:
3x^2 + 3 + 3x^2 + x + 4....combine like terms
6x^2 + x + 7 <===