I re-orders as 4,5,5,7,8,8,8,10,10.
Mean 7.2222222222222
Median 8
Mode 8
Range 6
Minimum 4
Maximum 10
Count n 9
Sum 65
Quartiles Quartiles:
Q1 --> 5
Q2 --> 8
Q3 --> 9
Interquartile
Range IQR 4
Outliers none
9514 1404 393
Answer:
- 0 ≤ m ≤ 7
- 0.4541 cm/month; average rate of growth over last 4 months of study
Step-by-step explanation:
<u>Part A</u>:
The study was concluded after 7 months. The fish cannot be expected to maintain exponential growth for any significant period beyond the observation period. A reasonable domain is ...
0 ≤ m ≤ 7
__
<u>Part B</u>:
The y-intercept is the value when m=0. It is the length of the fish at the start of the study.
__
<u>Part C</u>:
The average rate of change on the interval [3, 7] is given by ...
(f(7) -f(3))/(7 -3) = (4(1.08^7) -4(1.08^3))/4 = 1.08^3·(1.08^4 -1)
≈ 0.4541 cm/month
This is the average growth rate of the fish in cm per month over the period from 3 months to 7 months.
Let,
digital cameras be "x"
video cameras be "y"
Now,
According to the question,
5x + 3y = $3,213..................................................equation (1)
y = 4x..................................................................equation (2)
Taking equation (1)
5x + 3y = $3,213
Substituting the value of "y" from equation (2), we get,
5x + 3(4x) = $3,213
5x + 12x = $3,213
17x = $3,213
x = $3,213 / 17
x = $189
Taking equation (2)
y = 4x
Substituting the value of "x", we get,
y = 4 ($189)
y = $756
Now,
John buys a digital and a video camera. So, it costs him ($189 + $756) = $945
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
You can a linear equation when the line go between the margin and when it have a straight line