True
The two shorter lengths do not add up to more than the longest length. 3+3 is less than 9. Therefore, even if the two shorter lengths lay on top of the longer side, the two ends cannot meet to form a closed 3 sided figure
Answer:
Option B. Cosec θ = –5/3
Option C. Cot θ = 4/3
Option D. Cos θ = –4/5
Step-by-step explanation:
From the question given above, the following data were obtained:
Tan θ = 3/4
θ is in 3rd quadrant
Recall
Tan θ = Opposite / Adjacent
Tan θ = 3/4 = Opposite / Adjacent
Thus,
Opposite = 3
Adjacent = 4
Next, we shall determine the Hypothenus. This can be obtained as follow:
Opposite = 3
Adjacent = 4
Hypothenus =?
Hypo² = Opp² + Adj²
Hypo² = 3² + 4²
Hypo² = 9 + 16
Hypo² = 25
Take the square root of both side
Hypo = √25
Hypothenus = 5
Recall:
In the 3rd quadant, only Tan is positive.
Therefore,
Hypothenus = –5
Finally, we shall determine Sine θ, Cos θ, Cot θ and Cosec θ to determine which option is correct. This can be obtained as follow:
Opposite = 3
Adjacent = 4
Hypothenus = –5
Sine θ = Opposite / Hypothenus
Sine θ = 3/–5
Sine θ = –3/5
Cos θ = Adjacent / Hypothenus
Cos θ = 4/–5
Cos θ = –4/5
Cot θ = 1/ Tan θ
Tan θ = 3/4
Cot θ = 1 ÷ 3/4
Invert
Cot θ = 1 × 4/3
Cot θ = 4/3
Cosec θ = 1/ Sine θ
Sine θ = –3/5
Cosec θ = 1 ÷ –3/5
Invert
Cosec θ = 1 × –5/3
Cosec θ = –5/3
SUMMARY
Sine θ = –3/5
Cos θ = –4/5
Tan θ = 3/4
Cot θ = 4/3
Cosec θ = –5/3
Therefore, option B, C and D gives the correct answer to the question.
9514 1404 393
Answer:
(x, y) = (4, -4)
Step-by-step explanation:
A graphing calculator makes graphing very easy. The attachment shows the solution to be (x, y) = (4, -4).
__
The equations are in slope-intercept form, so it is convenient to start from the y-intercept and use the slope (rise/run) to find additional points on the line.
The first line can be drawn by staring at (0, -2) and moving down 1 grid unit for each 2 to the right.
The second line can be drawn by starting at (0, 2) and moving down 3 grid units for each 2 to the right.
The point of intersection of the lines, (4, -4), is the solution to the system of equations.
Answer:
n=4
Step-by-step explanation:
Attachment has my work.