<span>A </span>flexible container<span> at an </span>initial volume<span> of 7.14 </span>L contains<span> 7.51 </span>mol<span> of </span>gas<span>. </span>More gas<span> is</span>then added<span> to the </span>container until<span> it </span>reaches<span> a </span>final volume<span> of 17.7 </span>L<span>. </span>Assuming<span> the </span>pressure<span> and</span>temperature<span> of the </span>gas remain constant<span>, </span>calculate<span> the </span>number<span> of </span>moles<span> of </span>gas added<span> to the </span>container<span>.</span>
Answer is:
7.8 lb of 21% aluminum and 33.2 ib of <span>
42% aluminum.</span>
ω₁<span> = 21% ÷ 100% = 0.21.
ω</span>₂<span> = 42% ÷ 100% = 0.42.
ω</span>₃<span> = 38% ÷ 100% = 0.38.
</span>m₁ = ?.
m₂<span> = ?.
</span>m₃ = m₁ + m₂<span>.
</span>m₃ = 41 pounds.
m₁ = 41 lb - m₂<span>.
ω</span>₁ · m₁ + ω₂ ·m₂ = ω₃ · m₃.
0.21 · (41 lb -
m₂) + 0.42 · m₂ = 0.38 · 41 lb.
8.61 lb - 0.21m₂ + 0.42m₂ = 15.58 lb.
0.21m₂ = 6.97 lb.
m₂ = 6.97 lb ÷ 0.21.
m₂ = 33.2 lb.
m₁ = 41 lb - 33.2 lb.
m₁<span> = 7.8 lb.</span>
Answer:
something that deflects the Alpha particles
Answer:
<h2>1.74 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>1.74 g/mL</h3>
Hope this helps you
Answer:
For a mild human cough in air at 20 °C and 50% relative humidity, we found that ... larger droplets are dispersed into smaller ones gradually while moving away from the ... Complex phase change and transport phenomena such as evaporation and ... Natural Ventilation for Infection Control in Health-Care Settings
Explanation