Which postulate proves these two
1 answer:
Answer:
SAS
Step-by-step explanation:
According to the figure...
<em><u>AB=</u></em><em><u>CD</u></em><em><u>. </u></em><em><u>(</u></em><em><u>side)</u></em><em><u> </u></em><em><u>(</u></em><em><u>given)</u></em>
<em><u>AC=</u></em><em><u>AC </u></em><em><u>(</u></em><em><u>side)</u></em><em><u> </u></em><em><u>(</u></em><em><u>common</u></em><em><u>)</u></em>
<em><u>angle</u></em><em><u> </u></em><em><u>B=</u></em><em><u> </u></em><em><u>angle</u></em><em><u> </u></em><em><u>D </u></em><em><u>(</u></em><em><u>angle</u></em><em><u>)</u></em><em><u> </u></em><em><u>(</u></em><em><u>given</u></em><em><u>)</u></em>
You might be interested in
Answer: M = 3
Step-by-step explanation:
(5, 4) (7,10)
M = 3
Answer: 26
Step-by-step explanation:
I think 6x3=18
So, the answer is 18
Exclusive events, for OR we can add probabilities.
P(O or B) = 0.49 + 0.20 = 0.69
Answer 0.69
Answer:
Step-by-step explanations is the answer: