The answer is (0,3)
Hope this helps you
I would say 36. Sorry if I'm mistaken
Brainliest would be nice
Answer:
Step-by-step explanation:
![f(x) = ( {x}^{3} - 8)^{ \frac{2}{3} } \\ \\ f'(x) = \frac{2}{3} ( {x}^{3} - 8)^{ \frac{2}{3} - 1 } (3 {x}^{2} - 0) \\ \\ f'(x) = \frac{2}{3} ( {x}^{3} - 8)^{ \frac{2 - 3}{3} } \times 3 {x}^{2} \\ \\ f'(x) = 2{x}^{2}( {x}^{3} - 8)^{ \frac{ - 1}{3} } \\ \\ f'(x) = \frac{2{x}^{2}}{( {x}^{3} - 8)^{ \frac{ 1}{3} } } \\ \\ \huge \red{ \boxed{ f'(x) = \frac{2{x}^{2}}{ \sqrt[3]{( {x}^{3} - 8) } } }}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%5Cfrac%7B2%7D%7B3%7D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20-%201%20%7D%20%283%20%7Bx%7D%5E%7B2%7D%20%20-%200%29%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%5Cfrac%7B2%7D%7B3%7D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%20-%203%7D%7B3%7D%20%20%7D%20%20%5Ctimes%203%20%7Bx%7D%5E%7B2%7D%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%202%7Bx%7D%5E%7B2%7D%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B%20-%201%7D%7B3%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%20%5Cfrac%7B2%7Bx%7D%5E%7B2%7D%7D%7B%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B%201%7D%7B3%7D%20%20%7D%20%7D%20%5C%5C%20%20%5C%5C%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%20f%27%28x%29%20%3D%20%20%20%5Cfrac%7B2%7Bx%7D%5E%7B2%7D%7D%7B%20%5Csqrt%5B3%5D%7B%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%20%7D%20%7D%20%7D%7D)
Answer:
Step-by-step explanation:
Answer:
The answer to the question is
The percent of the distribution is less than m + d is 84 %
Step-by-step explanation:
To solve the question we list out the variables
Percentage of distribution between m +d and m - d = 68 %
Therefore percentage that are outside the range of m + d and m - d = 32 %
For symmetry to be maintained, of the 32 % that are outside the range of m + d and m - d, 16 % are on either side of the range m + d to m - d
That is 16 % < (m-d) ↔ (m+d)< 16% total range = 100 %
Therefore the proportion of the range lesser than m+d = 100 - 16 or 84 %