El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>
En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.
Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:
Cubo
V = l³
V = (4 cm)³
V = 64 cm³
Esfera
V' = (4π / 3) · R³
V' = (4π / 3) · (2 cm)³
V' ≈ 33.5103 cm³
Segundo, determinamos la diferencia de volumen entre los dos elementos:
V'' = V - V'
V'' = 64 cm³ - 33.5103 cm³
V'' = 30.4897 cm³
El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.
Para aprender más sobre volúmenes: brainly.com/question/23940577
#SPJ1
Circumference = 2(pi)r
Area = (pi)r^2
r = 5
5 * 2 = 10
Circumference = 10π
5 * 5 = 25
Area = 25π
Using 3.14 as pi substitute:
5 * 3.14 = 15.7
15.7 * 2 = 31.4
Circumference = 31.4
5 * 5 = 25
25 * 3.14 = 78.5
Area = 78.5
A.) Simplifying the equation would lead you to 15x^2-3x+9
b.) You know your answer is correct because you're adding the two polynomials together. 9x^2+6x^2 is 1tx^2. Now you have 2x-5x and since the negative is bigger, you get -3x. Then 5+4 is 9. You have no like terms therefore your answer is 15x^2-3x+9
Answer:
Since
x
is on the right side of the equation, switch the sides so it is on the left side of the equation.
x
2
−
2
x
+
3
=
G
(
x
)
Multiply
G
by
x
.
x
2
−
2
x
+
3
=
G
x
Subtract
G
x
from both sides of the equation.
x
2
−
2
x
+
3
−
G
x
=
0
Use the quadratic formula to find the solutions.
−
b
±
√
b
2
−
4
(
a
c
)
2
a
Substitute the values
a
=
1
,
b
=
−
2
−
G
, and
c
=
3
into the quadratic formula and solve for
x
.
−
(
−
2
−
G
)
±
√
(
−
2
−
G
)
2
−
4
⋅
(
1
⋅
3
)
2
⋅
1
Simplify.
Tap for more steps...
x
=
2
+
G
±
√
G
2
+
4
G
−
8
2
The final answer is the combination of both solutions.
x
=
2
+
G
+
√
G
2
+
4
G
−
8
2
x
=
2
+
G
−
√
G
2
+
4
G
−
8
2
Step-by-step explanation: