y = 9ln(x)
<span>y' = 9x^-1 =9/x</span>
y'' = -9x^-2 =-9/x^2
curvature k = |y''| / (1 + (y')^2)^(3/2)
<span>= |-9/x^2| / (1 + (9/x)^2)^(3/2)
= (9/x^2) / (1 + 81/x^2)^(3/2)
= (9/x^2) / [(1/x^3) (x^2 + 81)^(3/2)]
= 9x(x^2 + 81)^(-3/2).
To maximize the curvature, </span>
we find where k' = 0. <span>
k' = 9 * (x^2 + 81)^(-3/2) + 9x * -3x(x^2 + 81)^(-5/2)
...= 9(x^2 + 81)^(-5/2) [(x^2 + 81) - 3x^2]
...= 9(81 - 2x^2)/(x^2 + 81)^(5/2)
Setting k' = 0 yields x = ±9/√2.
Since k' < 0 for x < -9/√2 and k' > 0 for x >
-9/√2 (and less than 9/√2),
we have a minimum at x = -9/√2.
Since k' > 0 for x < 9/√2 (and greater than 9/√2) and
k' < 0 for x > 9/√2,
we have a maximum at x = 9/√2. </span>
x=9/√2=6.36
<span>y=9 ln(x)=9ln(6.36)=16.66</span>
the
answer is
(x,y)=(6.36,16.66)
Por lo que, el valor absoluto de -9 es 9. El valor absoluto de 9 es el número de unidades que está 9 del cero. Nueve está a nueve unidades de cero.
Answer:
≈ 10.63
Step-by-step explanation:
Calculate the distance d using the distance formula
d = 
with (x₁, y₁ ) = P(- 1, - 1) and (x₂, y₂ ) = L(6, - 9)
d = 
= 
= 
=
=
≈ 10.63 ( to the nearest hundredth )
.020 because it is 2 spots behind the decimal
Answer:
x
=
±
2
√
3
−
3
Step-by-step explanation:
Add
3
to both sides of the equation.
x
2
+
6
x
=
3
To create a trinomial square on the left side of the equation, find a value that is equal to the square of half of
b
.
(
b
2
)
2
=
(
3
)
2
Add the term to each side of the equation.
x
2
+
6
x
+
(
3
)
2
=
3
+
(
3
)
2
Simplify the equation.
Tap for more steps...
x
2
+
6
x
+
9
=
12
Factor the perfect trinomial square into
(
x
+
3
)
2
.
(
x
+
3
)
2
=
12