D= # of dimes
q= # of quarters
QUANTITY EQUATION:
d + q= 64
COST EQUATION:
0.10d + 0.25q= $9.25
STEP 1:
multiply quantity equation by -0.10 to be able to eliminate the d term in step 2
(-0.10)(d + q)= (-0.10)(64)
-0.10d - 0.10q= -6.40
STEP 2:
add equation from step 1 to cost equation to eliminate the d term and solve for q
Add
0.10d + 0.25q= $9.25
-0.10d - 0.10q= -6.40
0.15q= 2.85
divide both sides by 0.15
q= 19 quarters
STEP 3:
substitute q value in step 2 into either original equation to find d value
d + q= 64
d + 19= 64
subtract 19 from both sides
d= 45 dimes
CHECK:
0.10d + 0.25q= $9.25
0.10(45) + 0.25(19)= 9.25
4.50 + 4.75= 9.25
9.25= 9.25
ANSWER: There are 45 dimes and 19 quarters.
Hope this helps! :)
9514 1404 393
Answer:
6 days
Step-by-step explanation:
cost at Lee's: 19.25 +32.80x
cost at Felicia's: 41.10 +29.05x
These costs are the same when ...
19.25 +32.80x = 41.10 +29.05x
3.75x = 21.85
x ≈ 5.8267 ≈ 6 . . . . days
It will take 6 days for the total cost to be the same at the two companies.
All the numbers in the first equation have a common factor of 2. Removing that gives
.. x +4y = 6
making it easy to solve for x
.. x = 6 -4y
My choice would be to solve for x using the first equation.
_____
On second thought, it might actually be easier to solve either equation for 8y. That term then directly substitutes into the other equation (equivalent to adding the two equations).
.. 8y = 3x -11 . . . . . from the second equation
.. 2x +(3x -11) = 12 . . . substituting into the first equation
.. 5x = 23 . . . . . . . . . . collect terms, add 11 (what you would get by adding the equations in the first place)
.. x = 4.6
.. y = (3*4.6 -11)/8 = 0.35
Answer:
40
Step-by-step explanation: