Answer:
1. True
2. False.
3. True.
Step-by-step explanation:
1. The total area within any continuous probability distribution is equal to 1.00: it is true because the maximum probability (value) is one (1), therefore, the total (maximum) area is also one (1).
<em>Hence, for continuous probability distribution: probability = area</em>.
2. For any continuous probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: False because it has an infinite number of possible values, which can not be counted or uncountable.
<em>Hence, it cannot be computed. </em>
3. For any discrete probability distribution, the probability, P(x), of any value of the random variable, X, can be computed: True because it has a finite number of possible values, which are countable or can be counted.
<em>Hence, it can be computed. </em>
Asking the Math Gods...
B. 204in^2
<span><span>Surface Area (SA) =√3 * a²+ 3 * a * h</span>2 </span><span />
Answer:
First one: C. Second One:C.
Step-by-step explanation:
Kate purchased a car for $23,000. It will depreciate by a rate of 12% a year. What is the value of the car in 4 years?
a) $13,935.76
b) $12,874.57
c) $13,792.99
To solve this this is an exponential function. The price started at $23,000 and depreciates at 12% so the equation is f(x) = (23,0000)(1-0.12)^4. When calculated results with 13792.99328 which is C.
A rare coin is currently worth $450. The value of the coin increases 4% each year. Determine the value of the coin after 7 years.
a) $613.98
b) $546.78
c) $592.17
To solve this this is also an exponential function. The price started at $450 and the coin increases 4% each year so the equation is f(x) = (450)(1+0.04)^7. When calculated results with 592.169300656 which is c.
(X + 4)(X^2 - 1) = x^3 + 4x^2 - x - 4
Answer:
d
Step-by-step explanation:
There are only three shapes that can form tessellations: the equilateral triangle, square, and regular hexagon. Any one of these three shapes can be duplicated infinitely to fill a plane with no gaps. Many other types of tessellation are possible under different constraints.