Answer:
x = 8
y = -7
Step-by-step explanation:
This is a system of equations called simultaneous equations. We shall solve it by elimination method Step 1We shall label the equations (1) and (2)−3y−4x=−11.....(1)3y−5x=−61......(2)Step 2Multiply each term in equation (1) by 1 to give equation (3)1(-3y-4x=-11).....(1)-3y-4x=-11....(3)Step 3Multiply each term in equation 2 by -1 to give equation (4)-1(3y−5x=−61)......(2)-3y+5x=61.....(4)Step 4-3y-4x=-11....(3)-3y+5x=61.....(4)Subtract each term in equation (3) from each term in equation (4)-3y-(-3y)+5x-(-4x)=61-(-11)-3y+3y+5x+4x=61+110+9x=729x=72Step 5Divide both sides of the equation by 9, the coefficient of the unknown variable x to find the value of x 9x/9 = 72/9x = 8Step 6Put in x = 8 into equation (2)3y−5x=−61......(2)3y-5(8)=-613y-40=-61Collect like terms by adding 40 to both sides of the equation 3y-40+40=-61+403y=-21Divide both sides by 3, the coefficient of y to find the value of y 3y/3=-21/3y=-7Therefore, the values of x and y that satisfy the equations are 8 and -7 respectively
Answer:
d. 2
Step-by-step explanation:
The average rate of change is found from ...
... (f(x2) -f(x1))/(x2 -x1) = (5 - 3)/(2 -1) = 2/1 = 2
Answer:
(the relation you wrote is not correct, there may be something missing, so I will simplify the initial expression)
Here we have the equation:

We can rewrite this as:

Now we can add and subtract cos^2(x)*sin^2(x) to get:

We can complete squares to get:

and we know that:
cos^2(x) + sin^2(x) = 1
then:

This is the closest expression to what you wrote.
We also know that:
sin(x)*cos(x) = (1/2)*sin(2*x)
If we replace that, we get:

Then the simplification is:

Answer:
the answer is 15/14 when you add them
Answer:
D
Step-by-step explanation:
But basically, one by one you try moving the terms out of the radical.
75 is also 25 * 3 and since 25 has a perfect square root of 5 that goes out and 3 stays inside the radical.
x^3 is also x^2 * x and since x^2 has a perfect square root which is just x that goes outside while the remaining x stays inside.
y^9 is also y^8 * y and since we move variables out the radical in twos y^ goes outside the radical and y stays inside alone.
Finally, z is just z it can't be taken out so it stays inside the radical.
Hope that helps!