First, change it into general form(y=my+b).
3y=6x-1+10
3y=6x+9
y=2x+3
So, the slope is 2, and the y-intercept is 3
The answers are - 3 and 5.
Answer:
-2/3 -4 .04 2/3
Step-by-step explanation:

- Given - <u>a </u><u>bus </u><u>takes </u><u>6</u><u> </u><u>hours</u><u> </u><u>to </u><u>travel </u><u>a </u><u>particular</u><u> </u><u>distance </u><u>with </u><u>a </u><u>constant</u><u> </u><u>speed </u><u>of </u><u>3</u><u>6</u><u> </u><u>km/</u><u>hr</u>
- To calculate - <u>the </u><u>total </u><u>distance </u><u>travel </u><u>by </u><u>the </u><u>bus</u>
We know that ,

<u>this </u><u>formula</u><u> </u><u>can </u><u>be </u><u>transformed</u><u> to</u><u> </u><u>find</u><u> </u><u>out </u><u>distance</u><u> </u><u>,</u><u> </u><u>as </u><u>follows </u><u>~</u>

now ,
<u>substituting</u><u> </u><u>the </u><u>values </u><u>in </u><u>the </u><u>formula </u><u>state</u><u>d</u><u> </u><u>above </u><u>,</u>

thus ,
<u>the </u><u>bus </u><u>travels </u><u>a </u><u>distance</u><u> </u><u>of </u><u>2</u><u>1</u><u>6</u><u> </u><u>km</u><u> </u><u>in </u><u>6</u><u> </u><u>hours</u>
hope helpful ~