I am assuming that you can only pick one answer per question.
Let's imagine there are two questions on the test. I would:
1) Consider the first question. How many possible ways could you answer it?
2) Consider the second question. How many ways can you answer that?
If you wrote out all the possibilities, how many combinations of answers would you get across the two questions?
Answer:
x
=
37
/8
Step-by-step explanation:
Answer:
1) maldava y despota
2) pequenos
Step-by-step explanation:
Answer:
Step-by-step explanation:
Answer:
1 solution
Step-by-step explanation:
Jeremy can simplify the equation enough to determine if the x-coefficient on one side of the equation is the same or different from the x-coefficient on the other side. Here, that simplification is ...
-3x -3 +3x = -3x +3 +3
We see that the x-coefficient on the left is 0; on the right, it is -3. These values are different, so there is one solution.
__
In the attached, the left-side expression is called y1; the right-side expression is called y2. The two expressions are equal where the lines they represent intersect. That point of intersection is x=3. (For that value of x, both sides of the equation have a value of -3.)
__
<em>Additional comment</em>
If the equation's x-coefficients were the same, we'd have to look at the constants. If they're the same, there are an infinite number of solutions. If they are different, there are no solutions.