Answer:
Infinite pairs of numbers
1 and -1
8 and -8
Step-by-step explanation:
Let x³ and y³ be any two real numbers. If the sum of their cube roots is zero, then the following must be true:
![\sqrt[3]{x^3}+ \sqrt[3]{y^3}=0\\ \sqrt[3]{x^3}=- \sqrt[3]{y^3}\\x=-y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E3%7D%2B%20%5Csqrt%5B3%5D%7By%5E3%7D%3D0%5C%5C%20%5Csqrt%5B3%5D%7Bx%5E3%7D%3D-%20%5Csqrt%5B3%5D%7By%5E3%7D%5C%5Cx%3D-y)
Therefore, any pair of numbers with same absolute value but different signs fit the description, which means that there are infinite pairs of possible numbers.
Examples: 1 and -1; 8 and -8; 27 and -27.
6:24 or and 6/24
this explains the ration of the good apples and the bad apples
Answer:
6
Step-by-step explanation:
Answer: 80 minutes
Step-by-step explanation:in the picture
Multiply everything in the parenthesis by 2.
2x + 3y + 2x - 2y - 3x
Combine like terms.
x + y
Hope this helps!