Answer:
The minimum velocity of the particle =
units
Step-by-step explanation:
Given - A particle moves along a horizontal line so that its position at time t,
t ≥ 0, is given by s(t) = 40 + te^−t/20.
To find - Find the minimum velocity of the particle for 0 ≤ t ≤ 100.
Proof -
Velocity, v(t) = 
Now,
= 
= 0 + 
= 
⇒v(t) = 
Now,
For minimum velocity, Put 
Now,
![\frac{d}{dt}[v(t)] = \frac{d}{dt} [ -\frac{t}{20}e^{-\frac{t}{20} } + e^{-\frac{t}{20} } ]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%5Bv%28t%29%5D%20%20%3D%20%5Cfrac%7Bd%7D%7Bdt%7D%20%5B%20-%5Cfrac%7Bt%7D%7B20%7De%5E%7B-%5Cfrac%7Bt%7D%7B20%7D%20%7D%20%2B%20e%5E%7B-%5Cfrac%7Bt%7D%7B20%7D%20%7D%20%5D)
= 
Now,
Put
, we get

⇒t = 40
Now,
Check that the point is minimum or maximum
Calculate ![\frac{d^{2} }{dt^{2} } [v(t)]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5E%7B2%7D%20%7D%7Bdt%5E%7B2%7D%20%7D%20%5Bv%28t%29%5D)
Now,
= ![\frac{d}{dt} [ -\frac{2}{20} e^{-\frac{t}{20} } + \frac{t}{400} e^{-\frac{t}{20} }]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%20%5B%20-%5Cfrac%7B2%7D%7B20%7D%20e%5E%7B-%5Cfrac%7Bt%7D%7B20%7D%20%7D%20%2B%20%5Cfrac%7Bt%7D%7B400%7D%20e%5E%7B-%5Cfrac%7Bt%7D%7B20%7D%20%7D%5D)
= ![\frac{1}{400}e^{- \frac{t}{20} } [ 3 - \frac{t}{20}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B400%7De%5E%7B-%20%5Cfrac%7Bt%7D%7B20%7D%20%7D%20%5B%203%20-%20%5Cfrac%7Bt%7D%7B20%7D%5D)
⇒
=
> 0
∴ we get
t = 40 is point of minimum
So,
The minimum velocity be
v(40) = 
= 
= 
⇒v(40) =
units
∴ we get
The minimum velocity of the particle =
units