Answer:
Step-by-step explanation:
Question 1 = 2002
2002 - 2000 = 2 (the years since 2000)
y = (275 x 2) + 50
y = 875
Question 2 = 1425 likes
2005 - 2000 = 5 (the years since 2000)
y = (275 x 5) + 50
y = 1425
Question 3 = 2018
Since y = 5000
5000 - 50(the extra likes) = 4950
4950 / 275 = 18 (the years since 2000)
2000 + 18 = 2018 (the year)
ANSWER
The required equation is:
![9 {x}^{2} - 25{y}^{2} + 250y - 85 0=0](https://tex.z-dn.net/?f=9%20%7Bx%7D%5E%7B2%7D%20%20-%2025%7By%7D%5E%7B2%7D%20%20%2B%20250y%20%20-%2085%200%3D0)
EXPLANATION
The given equation is
![9 {x}^{2} - 25 {y}^{2} = 225](https://tex.z-dn.net/?f=9%20%7Bx%7D%5E%7B2%7D%20%20-%2025%20%7By%7D%5E%7B2%7D%20%20%3D%20225)
Dividing through by 225 we obtain;
![\frac{ {x}^{2} }{25} - \frac{ {y}^{2} }{9} = 1](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%7Bx%7D%5E%7B2%7D%20%7D%7B25%7D%20%20-%20%20%5Cfrac%7B%20%7By%7D%5E%7B2%7D%20%7D%7B9%7D%20%20%3D%201)
This is a hyperbola that has it's centre at the origin.
If this hyperbola is translated so that its center is now at (0,5).
Then its equation becomes:
![\frac{ {(x - 0)}^{2} }{25} - \frac{ {(y - 5)}^{2} }{9} = 1](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%7B%28x%20-%200%29%7D%5E%7B2%7D%20%7D%7B25%7D%20%20-%20%20%5Cfrac%7B%20%7B%28y%20-%205%29%7D%5E%7B2%7D%20%7D%7B9%7D%20%20%3D%201)
We multiply through by 225 to get;
![9 {x}^{2} - 25( {y - 5})^{2} = 225](https://tex.z-dn.net/?f=9%20%7Bx%7D%5E%7B2%7D%20%20-%2025%28%20%7By%20-%205%7D%29%5E%7B2%7D%20%20%3D%20225)
We now expand to get;
![9 {x}^{2} - 25( {y}^{2} - 10y + 25 )= 225](https://tex.z-dn.net/?f=9%20%7Bx%7D%5E%7B2%7D%20%20-%2025%28%20%7By%7D%5E%7B2%7D%20-%2010y%20%2B%2025%20%29%3D%20225)
![9 {x}^{2} - 25{y}^{2} + 250y - 6 25 = 225](https://tex.z-dn.net/?f=9%20%7Bx%7D%5E%7B2%7D%20%20-%2025%7By%7D%5E%7B2%7D%20%20%2B%20250y%20%20-%206%2025%20%3D%20225)
The equation of the hyperbola in general form is
![9 {x}^{2} - 25{y}^{2} + 250y - 85 0=0](https://tex.z-dn.net/?f=9%20%7Bx%7D%5E%7B2%7D%20%20-%2025%7By%7D%5E%7B2%7D%20%20%2B%20250y%20%20-%2085%200%3D0)
Answer:
0.942 is the required probability.
Step-by-step explanation:
We are given the following in the question:
x is a binomial random variable with n = 5 and p = 0.8.
Then,
where n is the total number of observations, x is the number of success, p is the probability of success.
We have to evaluate:
![P(x \geq 3) = P(x = 3) + P(x = 4) +P(x=5)\\\\= \binom{5}{3}(0.8)^3(1-0.8)^2 +\binom{5}{4}(0.8)^4(1-0.8)^1 +\binom{5}{5}(0.8)^5(1-0.8)^0\\\\= 0.2048 +0.4096+0.3276=0.942](https://tex.z-dn.net/?f=P%28x%20%5Cgeq%203%29%20%3D%20P%28x%20%3D%203%29%20%2B%20P%28x%20%3D%204%29%20%2BP%28x%3D5%29%5C%5C%5C%5C%3D%20%5Cbinom%7B5%7D%7B3%7D%280.8%29%5E3%281-0.8%29%5E2%20%2B%5Cbinom%7B5%7D%7B4%7D%280.8%29%5E4%281-0.8%29%5E1%20%2B%5Cbinom%7B5%7D%7B5%7D%280.8%29%5E5%281-0.8%29%5E0%5C%5C%5C%5C%3D%200.2048%20%2B0.4096%2B0.3276%3D0.942)
0.942 is the required probability.
It reveals the slope and a single point on the line
If I’m correct it should be 7 because range is least greatest subtracted from most greatest and the problem is asking from the green box so 67-60=7