1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
10

Hey guys it's been a while can you just help me with these two problems?​

Mathematics
2 answers:
lutik1710 [3]3 years ago
7 0

Answer:

Your already right on both of them lol

Step-by-step explanation:

Pls brainliest thx! :D

siniylev [52]3 years ago
5 0

Answer:

you're right

Step-by-step explanation:

it's b, and a!

You might be interested in
Another derivatives question, can I get help please?
alex41 [277]
\bf \textit{de}\textit{finition of a derivative as a limit}\\\\
\lim\limits_{h\to 0}~\cfrac{f(x+h)-f(x)}{h}\\\\
-------------------------------\\\\
f(x)=5x^2-6x-3
\\\\\\
\lim\limits_{h\to 0}~\cfrac{[5(x+h)^2-6(x+h)-3]~~-~~(5x^2-6x-3)}{h}
\\\\\\
\lim\limits_{h\to 0}~\cfrac{[5(x^2+2xh+h^2)-6(x+h)-3]~~-~~5x^2+6x+3}{h}

\bf \lim\limits_{h\to 0}~\cfrac{\underline{5x^2}+10xh+5h^2\underline{-6x}-6h\underline{-3}~~~\underline{-5x^2+6x+3}}{h}
\\\\\\
\lim\limits_{h\to 0}~\cfrac{10xh+5h^2-6h}{h}\implies \lim\limits_{h\to 0}~\cfrac{\underline{h}(10x+5h-6)}{\underline{h}}
\\\\\\
\lim\limits_{h\to 0}~10x+5(0)-6\implies \lim\limits_{h\to 0}~10x-6
7 0
3 years ago
The function f is represented by f(x)=3x2^x. The function is represented by the table below.
Oksanka [162]
I suppose it’s -16fxg
6 0
3 years ago
Solve each equation by completing the square. If necessary, round to the nearest hundredth.
Ksenya-84 [330]
1.)\\ \\ b^2+10b=75\\ \\ b^2+10b-75=0\\ \\\Delta = b^{2}-4ac = 10^{2}-4*1*(75)=100+300=400 \\ \\\sqrt{\Delta }=\sqrt{400}=20

b_{1}=\frac{-b-\sqrt{\Delta }}{2a} =\frac{-10-20}{2}=\frac{-30}{2}=-15\\ \\b_{2}=\frac{-b+\sqrt{\Delta }}{2a} =\frac{-10+20}{2}=\frac{10}{2}=5



2.)\\ \\ n^2-20n=-75\\ \\ n^2-20n+75=0\\ \\\Delta = b^{2}-4ac = (-20)^{2}-4*1*75=400-300=100 \\ \\\sqrt{\Delta }=\sqrt{100}=10

n_{1}=\frac{-b-\sqrt{\Delta }}{2a} =\frac{20-10}{2}=\frac{10}{2}=5\\ \\n_{2}=\frac{-b+\sqrt{\Delta }}{2a} \frac{20+10}{2}=\frac{30}{2}=15



3.)\\ \\t^2+8t-9=0\\ \\\Delta = b^{2}-4ac = 8^{2}-4*1* (-9)=64+36=100 \\ \\\sqrt{\Delta }=\sqrt{100}=10

t_{1}=\frac{-b-\sqrt{\Delta }}{2a} =\frac{-8-10}{2}=\frac{-18}{2}=-9\\ \\t_{2}=\frac{-b+\sqrt{\Delta }}{2a} \frac{-8+10}{2}=\frac{2}{2}=1


4.)\\ \\m^2-2m-8=0\\ \\\Delta = b^{2}-4ac = (-2)^{2}-4*1* (-8)=4+32=36\\ \\\sqrt{\Delta }=\sqrt{36}=6

m_{1}=\frac{-b-\sqrt{\Delta }}{2a} =\frac{2-6}{2}=\frac{-4}{2}=-2\\ \\m_{2}=\frac{-b+\sqrt{\Delta }}{2a}= \frac{2+6}{2}=\frac{8}{2}=4



5.)\\ \\ v^2+4v-2=0\\ \\\Delta = b^{2}-4ac = 4^{2}-4*1* (-2)=16+8=24\\ \\\sqrt{\Delta }=\sqrt{24}= \sqrt{4*6}=2\sqrt{6}

v_{1}=\frac{-b-\sqrt{\Delta }}{2a} =\frac{-4-2\sqrt{6}}{2}=\frac{2(-2-\sqrt{6}}{2}= -2-\sqrt{6}\approx -2-2,45\approx -4,45\\ \\v_{2}=\frac{-b+\sqrt{\Delta }}{2a}= \frac{-4+2\sqrt{6}}{2}=\frac{2(\sqrt{6}-2}{2}= \sqrt{6}-2 \approx 2,45-2\approx 0,45


3 0
3 years ago
How to find if a function is positive or negative?
stiks02 [169]
Positive because a function is beetween and past
6 0
3 years ago
GEOMETRY HELP? what is the value of x to the nearest tenth?
Leokris [45]
R = sqrt(3,6^2+(11/2)^2) = 6,6
7 0
4 years ago
Other questions:
  • Plz reanswer it If (x+4): (3x+1) is the duplicate ratio of 3:4 find the value of x.​
    15·2 answers
  • What is most likely the thickness of a penny when measured with a ruler?
    14·1 answer
  • Why does ice cream melt on a hot day
    12·2 answers
  • 4(-3x-5)-(10+4x) simplify
    6·2 answers
  • Substitute for y and rewrite the system of equations as a single equation which can be used to solve for x.
    9·1 answer
  • What is the slope of a line parallel to the line -10x-5y=25?​
    5·1 answer
  • The substances that are present after any chemical reaction are called ._____
    10·2 answers
  • Talon read 30 pages last night in 20 minutes. If Drake read twice as fast, what was Drake's reading speed?
    8·1 answer
  • At the beginning of Jack's diet, he was 257 pounds. If he lost 3 pounds per week, find his weight after
    9·2 answers
  • The liquid base of an ice cream has an initial temperature of 86°C before it is placed in a freezer with a constant temperature
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!