<h3>given:</h3>
radius= 8 m
<h3>to find:</h3>
the volume of the sphere
<h3>solution:</h3>




<u>therefore</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>sphere</u><u> </u><u>is</u><u> </u><u>2144.7</u><u> </u><u>cubic</u><u> </u><u>meters</u><u>.</u>
They're just variables, they can stand for anything. They're not that important. But h unsually stands for hours
Answer:
(x+4)(x-3)
Step-by-step explanation:
x^2+x-12
This equation has the given solutions of -4,3
Answer:
m>3 or m<-5
Step-by-step explanation:
First simplify -3m-1 < -10:
-3m < -9
m > 3 (switch direction of sign when dividing by negative number)
Then simplify -4+2m<-14:
2m<-10
m<-5
m>3 or m<-5
![\bf \stackrel{\textit{testing for the x-axis symmetry, }\theta =-\theta }{r=8cos(3\theta )\implies r=8cos[3(-\theta)]}\implies r=8cos(-3\theta) \\\\\\ r=8cos(3\theta)~~\boxed{\checkmark}~~\impliedby \stackrel{\textit{trigonometry symmetry identities}}{cos(\theta)=cos(-\theta)}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Btesting%20for%20the%20x-axis%20symmetry%2C%20%7D%5Ctheta%20%3D-%5Ctheta%20%7D%7Br%3D8cos%283%5Ctheta%20%29%5Cimplies%20r%3D8cos%5B3%28-%5Ctheta%29%5D%7D%5Cimplies%20r%3D8cos%28-3%5Ctheta%29%0A%5C%5C%5C%5C%5C%5C%0Ar%3D8cos%283%5Ctheta%29~~%5Cboxed%7B%5Ccheckmark%7D~~%5Cimpliedby%20%5Cstackrel%7B%5Ctextit%7Btrigonometry%20symmetry%20identities%7D%7D%7Bcos%28%5Ctheta%29%3Dcos%28-%5Ctheta%29%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf \stackrel{\textit{testing for the y-axis symmetry, }\theta =\pi -\theta }{r=8cos(3\theta )\implies r=8cos[3(\pi -\theta)]}\implies r=8cos(3\pi -3\theta)\boxed{\otimes}\\\\ -------------------------------\\\\ \stackrel{\textit{testing for the origin symmetry, }\theta =\pi +\theta }{r=8cos(3\theta )\implies r=8cos[3(\pi +\theta)]}\implies r=8cos(3\pi +3\theta)\boxed{\otimes}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Btesting%20for%20the%20y-axis%20symmetry%2C%20%7D%5Ctheta%20%3D%5Cpi%20-%5Ctheta%20%7D%7Br%3D8cos%283%5Ctheta%20%29%5Cimplies%20r%3D8cos%5B3%28%5Cpi%20-%5Ctheta%29%5D%7D%5Cimplies%20r%3D8cos%283%5Cpi%20-3%5Ctheta%29%5Cboxed%7B%5Cotimes%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Cstackrel%7B%5Ctextit%7Btesting%20for%20the%20origin%20symmetry%2C%20%7D%5Ctheta%20%3D%5Cpi%20%2B%5Ctheta%20%7D%7Br%3D8cos%283%5Ctheta%20%29%5Cimplies%20r%3D8cos%5B3%28%5Cpi%20%2B%5Ctheta%29%5D%7D%5Cimplies%20r%3D8cos%283%5Cpi%20%2B3%5Ctheta%29%5Cboxed%7B%5Cotimes%7D)
so as you can see, since the x-axis test yielded the same original expression, it has symmetry with the x-axis, or namely the "polar axis".