1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scrat [10]
3 years ago
11

Find the volume of the figure. A) 33 in3 B) 150 in3 C) 233 in3 D) 425 in3

Mathematics
2 answers:
lana66690 [7]3 years ago
7 0
Hello there!

When finding the volume, all we would do is add, and not multiply.

The bottom square was 125.

I added each square of its sides.

And for the upper rectangular prism, this would result into 108.

We do 125+108=233in^3

<span>A) 33 in3
B) 150 in3
C) 233 in3
 D) 425 in3
</span>
I hope this helps you!



dezoksy [38]3 years ago
4 0
Top part: 12 * 3 * 3 = 108

bottom part: 5 * 5 *5 = 125

 total: 108 +125 = 233 in^3

Answer is C

You might be interested in
-0.6 irrational or rational ​
nydimaria [60]

Answer:

Rational

Step-by-step explanation:

If you can write it as a fraction (=ratio), it is rational.

-6/10 = -0.6

4 0
4 years ago
Solve the equation for y -8x+4y=20
Pavel [41]

Answer:

8x-5y=-20

Step-by-step explanation:

First you have to collect it like terms (5y-8x=20

Then reorder the terms (-8x+5y=20)

Next is to change the signs (8x-5y=-20)

Then you have your answer

7 0
3 years ago
Right Triangle Trig.
d1i1m1o1n [39]

The values are vx = \frac{14\sqrt{3} }{\sqrt{2} }, vw = \frac{14\sqrt{3} }{\sqrt{2} } and m∠x = 45°, for the given right angle diagram.

Step-by-step explanation:

The given is,

                Right angled triangle XVW,

                                     XW = 14\sqrt{3}

                                   m∠V = 90°

                                  m∠W = 45°

Step:1

              Given diagram is right angle triangle,

              Trigonometric ratios for right angle is,

                                 sin ∅ =\frac{Opp}{Hyp}............................(1)

                                  cos ∅ = \frac{Adj}{Hyp} .........................(2)

                                  tan ∅ = \frac{Opp}{Hyp}..........................(3)

Step:2

             For the value of VX,

                                   sin ∅ =\frac{VX}{XW}

            From given,

                               ∅ = 45°

                           XW = 14\sqrt{3}

           Above equation becomes,

                                     sin 45 =\frac{VX}{14\sqrt{3} }

            Where, Sin 45 = \frac{1}{\sqrt{2} },

                                            \frac{1}{\sqrt{2} } = \frac{VX}{14\sqrt{3} }

                                           VX = \frac{14\sqrt{3} }{\sqrt{2} }

Step:3

              For the value of VW,

                                   cos ∅ =\frac{VW}{XW}

            From given,

                               ∅ = 45°

                           XW = 14\sqrt{3}

           Above equation becomes,

                                     cos 45 =\frac{VW}{14\sqrt{3} }

            Where, cos 45 = \frac{1}{\sqrt{2} },

                                            \frac{1}{\sqrt{2} } = \frac{VW}{14\sqrt{3} }

                                           VW = \frac{14\sqrt{3} }{\sqrt{2} }

Step:4

             For the value m∠x = a,

                                      tan a =\frac{VX}{VW}

            From given,

                            VX = \frac{14\sqrt{3} }{\sqrt{2} }

                           VW = \frac{14\sqrt{3} }{\sqrt{2} }

           Above equation becomes,

                                     tan a =\frac{\frac{14\sqrt{3} }{\sqrt{2} } }           {\frac{14\sqrt{3} }{\sqrt{2} } }

                                      tan a = 1

                                             a = tan^{-1} (1)

                                             a = 45°

                                 m∠x = a = 45°

Step:5

            Check for solution,

                         m∠v  = m∠w + m∠x

                                   = 45° + 45°

                            90° =   90°

Result:

            The values are vx = \frac{14\sqrt{3} }{\sqrt{2} }, vw = \frac{14\sqrt{3} }{\sqrt{2} } and m∠x = 45°, for the given right angle diagram.

           

5 0
4 years ago
Show an example where the product of two irrational numbers is a rational number.
romanna [79]

Answer:

√2 x √2 = 2

Step-by-step explanation:

Square roots that aren't perfect squares are irrational.

For Ex: √2 is irrational.

But √2 x √2 = √4 = 2.  2 is rational

Ex. 2 : √8 x √2 = √16 = 4.  4 is rational

4 0
3 years ago
I need to know the start value!!
dedylja [7]

Answer: <em>is it 4, maybe?</em>

7 0
4 years ago
Other questions:
  • A taste test asks people from Texas and California which pasta they preferred brand a or brand b this table shows the results. A
    7·2 answers
  • Plz help ASAP for 5 points ​
    12·2 answers
  • 13) A class has 24 women and 8 men. What<br> percentage are men?
    13·2 answers
  • Find the area of the shaded regions below. Give your answer as a completely simplified exact value in terms of π (no approximati
    13·2 answers
  • Shari is less than three times clare's age. Shari is 15 years old. Which Inequality statement represents this relationship? A. 3
    8·1 answer
  • If a,m and b are in an AP then show that m=a+b/2
    8·1 answer
  • To estimate the size of the grizzly bear population in a national park, rangers tagged and released 12 grizzly bears into the pa
    11·1 answer
  • How could chlorine enter the oceans?<br>​
    5·1 answer
  • What is 0.459 roused to the nearest hundredth
    5·2 answers
  • Question 13 of 25
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!