The equation would look like this:
h - 8⁵
To solve for the value of h.
It must be in standard form, where one side is equal to 0.
h - 8⁵ = 0
h = 8⁵
h = 8 x 8 x 8 x 8 x 8
h = 32,768
The exponent above the number indicates the number of time its base will be multiplied by itself. In this case, the base will be multiplied 5 times.
To check: h = 32,768
h - 8⁵ = 0
32,768 - 32,768 = 0
0=0
Answer: A sum
Step-by-step explanation: The result of adding two or more numbers together is a sum.
Answer:
Hence, option: B is correct (11.02 seconds)
Step-by-step explanation:
Spencer hits a tennis ball past his opponent. The height of the tennis ball, in feet, is modeled by the equation h(t) = –0.075t2 + 0.6t + 2.5, where t is the time since the tennis ball was hit, measured in seconds.
Now we are asked:
How long does it take for the ball to reach the ground?
i.e. we have to find the value of t such that height is zero i.e. h(t)=0.

or 
i.e. we need to find the roots of the above quadratic equation.
on solving the equation we get two roots as:
t≈ -3.02377 and t≈11.0238
As time can't be negative; hence we will consider the value of t as t≈11.0238.
Hence it takes 11.02 seconds for the ball to reach the ground.
Hence option B is correct (11.02 seconds).
Answer:
The probability of randomly selecting a rod that is shorter than 22 cm
P(X<22) = 0.1251
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given mean of the Population = 25cm
Given standard deviation of the Population = 2.60
Let 'x' be the random variable in normal distribution
Given x=22

<u><em>Step(ii):</em></u>-
The probability of randomly selecting a rod that is shorter than 22 cm
P(X<22) = P( Z<-1.15)
= 1-P(Z>1.15)
= 1-( 0.5+A(1.15)
= 0.5 - A(1.15)
= 0.5 - 0.3749
= 0.1251
The probability of randomly selecting a rod that is shorter than 22 cm
P(X<22) = 0.1251
Answer:
Ten hundredths in standard from is 0.1.